Что такое перенапряжение? Виды перенапряжений и их опасность. Устройство защиты от импульсных грозовых перенапряжений, схема подключения Причины возникновения и характер импульсов перенапряжения

Современный человек, стараясь идти в ногу со временем, насыщает свой дом электроприборами самого различного назначения. Но не каждый домовладелец задумывается о том, что в случае возникновения в сети даже очень кратковременного импульсного напряжения в разы превышающего номинальное, весь его дорогостоящий парк электротехники и электроники может выйти из строя. Что примечательно, воздействие перенапряжения на электрические потребители пагубно тем, что пораженная техника, как правило, становится не пригодной для ремонта. Данный форс-мажор пусть не часто, но гарантировано может быть следствием перенапряжения в сетях, вызванного воздействием грозы, аварийным перехлестом фаз или коммутационных процессов. Защитить электрооборудование призваны так называемые устройства защиты от импульсных перенапряжений. Принцип работы УЗИП, классы и разницу между ними мы рассмотрели ниже.

Классификация УЗИП

Аппараты защиты от импульсных напряжений являются широким и обобщенным понятием. В эту категорию устройств входят приборы, которые можно подразделить на классы:

  • I класс. Предназначены для защиты от непосредственного воздействия грозового разряда. Данными устройствами в обязательном порядке должны укомплектовываться вводно-распределительные устройства (ВРУ) административных и промышленных зданий и жилых многоквартирных домов.
  • II класс. Обеспечивают защиту электрических распределительных сетей от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции второй ступени защиты от воздействия удара молнии. Монтируются и подключаются к сети в распределительных щитах.
  • III класс. Применяются, чтобы обезопасить аппаратуру от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нулевым проводом. Устройства данного класса работают также в режиме фильтров высокочастотных помех. Наиболее актуальны для условий частного дома или квартиры, подключаются и устанавливаются непосредственно у потребителей. Особой популярностью пользуются устройства, которые изготавливаются, как модули, оснащенные быстросъемным креплением для установки на , либо имеют конфигурацию электрических штепсельных розеток или сетевых вилок.

Типы устройств

Все устройства, обеспечивающие защиту от импульсных перенапряжений, подразделяются на два типа, которые отличаются по конструкции и принципу действия. Рассмотрим, как работает УЗИП разных видов.

Вентильные и искровые разрядники . Принцип действия разрядников основан на использовании эффекта искровых промежутков. В конструкции разрядников предусмотрен воздушный зазор в перемычке, соединяющей фазы линии электропередач с заземляющим контуром. При номинальной величине напряжения цепь в перемычке разорвана. В случае воздействия грозового разряда в результате в ЛЭП происходит пробой воздушного зазора, цепь между фазой и землей замыкается, импульс высокого напряжения уходит напрямую в землю. Конструкция вентильного разрядника в цепи с искровым промежутком предусматривает резистор, на котором происходит гашение высоковольтного импульса. Разрядники в большинстве случаев находят применение в сетях высокого напряжения.

Ограничители перенапряжения (ОПН) . Данные устройства пришли на смену устаревшим и громоздким разрядникам. Для того чтобы понять, как работает ограничитель, надо вспомнить свойства нелинейных резисторов, построен на использовании их вольтамперных характеристик. В качестве нелинейных резисторов в УЗИП используется варистор. Для людей не искушенных в тонкостях электротехники, немного информации, из чего состоит и как он работает. В качестве основного материала для изготовления варисторов служит оксид цинка. В смеси с окислами других металлов создается сборка, состоящая из p-n переходов, обладающая вольтамперными характеристиками. Когда величина напряжения в сети соответствует номинальным параметрам, ток в цепи варистора близок к нулю. В момент возникновения перенапряжения на p-n переходах происходит резкое возрастание тока, что приводит к снижению напряжения до номинальной величины. После нормализации параметров сети варистор возвращается в непроводящий режим и влияние на работу устройства не оказывает.

Компактные размеры ОПН и обширный диапазон разновидностей данных приборов позволили значительно расширить область применения этих устройств, появилась возможность использования УЗИП, как средства защиты от перенапряжений для частного дома или квартиры. Однако ограничители импульсных напряжений, собранные на варисторах, несмотря на все свои преимущества по сравнению с разрядниками, имеют один существенный недостаток – ограничение ресурса работы. Вследствие встроенной в них тепловой защиты, прибор после срабатывания остается некоторое время неработоспособным, по этой причине на корпусе УЗИП предусмотрено быстросъемное устройство, позволяющее произвести быструю замену модуля.

Более подробно о том, что такое УЗИП и какое у него назначение, вы можете узнать из видео:

Как обустроить защиту?

Прежде чем приступить к установке и подключению средств защиты от импульсных перенапряжений, необходимо , иначе все работы по обустройству УЗИП потеряют весь смысл. Классическая схема предусматривает 3 уровня защиты. На вводе устанавливаются разрядники (УЗИП класс I) , обеспечивающие грозозащиту. Следующее защитное устройство класс II, как правило, ОПН подключается в распределительном щите дома. Степень его защиты должна обеспечивать снижение величины перенапряжения до параметров безопасных для бытовых приборов и сети освещения. В непосредственной близости электронных изделий, чувствительных к колебаниям по току и напряжению желательно класса III.

При подключении УЗИП необходимо предусмотреть их токовую защиту и защиту от коротких замыканий вводным автоматическим выключателем или плавкими предохранителями. Подробнее о монтаже данных защитных устройств мы расскажем в отдельной статье.

Вот мы и рассмотрели принцип работы УЗИП, классы и разницу между ними. Надеемся, предоставленная информация была для вас полезной!

Молния может стать причиной пожаров, сильных разрушений, взрывов, травмирования людей и животных, в том числе и смертельных случаев. Специалисты различают первичные и вторичные воздействия удара молнии. Первые возникают при прямом ее попадании в объекты. Непосредственное попадание атмосферного электричества в жилые и промышленные постройки может полностью разрушить их, убить человека или привести к техногенным авариям.

Вторичное воздействие молнии (электромагнитная или электростатическая индукция) вызывается близким с объектом разрядом молнии или заносом высоких потенциалов внутрь построек по подземным или наружным металлическим конструкциям, коммуникациям, воздушным линиям электропередач и проводам другого назначения, а также трубопроводам или кабелям.

Вторичное воздействие разрядов молнии негативно влияет на телефонию, электробытовые сети 220/380 В, системы мобильной связи, а также передачи информации и данных, спутникового и телевизионного вещания. Выход из строя даже на короткое время вышеперечисленных систем может привести к непоправимым последствиям, поэтому современные системы молниезащиты объектов включают защиту и от непосредственных ударов молнии, и от вторичных ее проявлений.

Что это такое импульсные перенапряжения

Кратковременный, но значительный скачок напряжения, а также появление на металлических конструкциях электродвижущей силы - называется импульсным перенапряжением. Специалисты обычно различают проявления электромагнитной и электростатической индукции, занос внутрь объекта высоких потенциалов, а также коммутационное перенапряжение.

Импульсное перенапряжение коммутационного происхождения связано с внезапной сменой режима работы в системе электроснабжения, при коротком замыкании, включении и отключении трансформаторов, включении резервного питания и т.д. При развитии данного типа перенапряжения накопленная в элементах сети энергия из-за резкой смены параметров режима работы приводит к развитию переходного процесса со значительным скачком напряжения.

Повышение напряжений в некоторых случаях может достигать значений в сотни раз выше, чем их нормальные эксплуатационные параметры. Это приводит не только к выходу из строя электрических и электронных устройств и приборов, систем электроснабжения, телекоммуникаций и связи, контроля и управления, но и может являться причиной пожара и даже смерти людей.

Причиной появления высоких напряжений обычно является разряд молнии, коммутационные процессы в системах электроснабжения, а также электромагнитные помехи, вызываемые мощными промышленными электроустановками. Различают перенапряжения:

  • коммутаций;
  • непосредственного разряда (при разряде во внешнюю молниезащиту или воздушные ЛЭП);
  • индуцированные (при разряде рядом со зданием или в близстоящие объекты).

Электромагнитная индукция после разряда молнии характеризуется образованием магнитного поля в контурах металлических коммуникациях различной формы с переменными во времени параметрами. При этом значение электродвижущей силы зависит от амплитуды и крутизны тока молнии, а также размеров и формы самого контура.

Индукция электростатической природы провоцируется скоплением под кучевыми облаками с определенным электрическим потенциалом зарядов с противоположным знаком. Но в земле и на проводящих конструкциях наземных промышленных или жилых объектов это накопление приводит к тому, что за время разряда молнии заряды не успевают стечь в землю и становятся причиной появления импульсного перенапряжения. Чаще всего разность потенциалов появляется между металлическими трубами (водопроводными или канализационными), электропроводкой расположенными в постройке и металлической крышей. При этом, чем выше постройка, тем больше значения накопленных потенциалов.

Примеры повреждений, вызванных вторичными воздействиями молнии

Разрушение телефонного аппарата и временнного вводного щита электроустановки


Характеристики импульсного перенапряжения

Энергонасыщенность современных промышленных и жилых объектов, наличие разветвленной электрической сети от проектировщиков систем защиты требует грамотного выбора устройств защиты от импульсных перенапряжений (УЗИП) . Для этого необходимо разобраться в основных параметрах, характеризующих возникающие импульсы перенапряжения, а именно:

  • форму волны тока (характеризуется временем нарастания и спада);
  • амплитуда тока.

Для описания токов разряда молнии применяют 2 вида формы волн: удлиненную (10/350 мксек) и короткую (8/20 мксек). Первая соответствует непосредственному (прямому) попаданию разряда молнии и показывает нарастание тока за 10 мксек до максимального импульсного значения (I imp) и снижению его показания в 2 раза за 350 мсек. Короткая волна наблюдается при удаленном разряде молнии и при коммутационных процессах. Она характеризует нарастание тока за 8 мксек до максимума (I max) и спад до половины значения за 20 мксек. Импульс 10/350 мксек воздействует на электросеть в десятки раз дольше, чем 8/20 мксек, поэтому он более опасен для защищаемых объектов.

Виды УЗИП

УЗИП имеют корпус из негорючего пластика и в большинстве случаев представляют собой разрядники или варисторы самых разных конфигураций. Сегодня ограничители импульсных перенапряжений имеют индикатор выхода из строя. Данные устройства необходимы для создания надежной и эффективной системы внутренней молниезащиты.

Разрядник обычно представляет собой электроприбор (открытого воздушного или закрытого типа) с двумя электродами. На них при увеличении напряжения до определенного значения они пробиваются, тем самым снимая импульс перенапряжения. Варистор является полупроводниковым устройством, имеющим симметричную крутую вольт-амперную характеристику. Принцип его действия заключатся в том, что при достижении на его контактах определенной величины напряжения, он быстро и значительно понижает значение своего сопротивления и пропускает ток.

Ограничители импульсных перенапряжений характеризуются параметрами номинального, импульсного напряжения и временного перенапряжения. В зависимости от мощности импульса, которое УЗИП может рассеять и в соответствии с ГОСТом Р 1992-2002 (МЭК 61643-1-98) выделяют 3 класса ограничителей:

  • I B (амплитуда 25-100 кА; для волны 10/350 мксек) - применяется в распределительных щитках;
  • II C (амплитуда 10-40 кА; для волны 8/20 мкс) - применяется в вводах электропитающих устройств, щитках помещений;
  • III D (амплитуда до 10 кА; для волны 8/20 мкс) - обычно устройства этого класса уже встроены в электроприборы.

Устройство защиты от импульсных перенапряжений (УЗИП) — устройство предназначенное для защиты электрической сети и электрооборудования от перенапряжений которые могут быть вызваны прямым или косвенным грозовым воздействием, а так же переходными процессами в самой электросети.

Другими словами УЗИПы выполняют следующие функции :

Защита от удара молнии электрической сети и оборудования, т.е. защита от перенапряжений вызванных прямыми или косвенными грозовыми воздействиями

Защита от импульсных перенапряжений вызванных коммутационными переходными процессами в сети, связанных с включением или отключением электрооборудования с большой индуктивной нагрузкой, например силовых или сварочных трансформаторов, мощных электродвигателей и т.д.

Защита от удаленного короткого замыкания (т.е. от перенапряжения возникшего в результате произошедшего короткого замыкания)

УЗИПы имеют различные названия: ограничитель перенапряжений сети — ОПС (ОПН) , ограничитель импульсных напряжений — ОИН , но все они имеют одинаковые функции и принцип работы.

  1. Принцип работы и устройство защиты УЗИП

Принцип работы УЗИПа основан на применении нелинейных элементов, в качестве которых, как правило, выступают варисторы.

Варистор — это полупроводниковый резистор сопротивление которого имеет нелинейную зависимость от приложенного напряжения.

Ниже представлен график зависимости сопротивления варистора от приложенного к нему напряжения:

Из графика видно, что при повышении напряжения выше определенного значения сопротивление варистора резко снижается.

Как это работает на практике разберем на примере следующей схемы:

На схеме упрощенно представлена однофазная электрическая цепь, в которой через автоматический выключатель подключена нагрузка в виде лампочки, в цепь так же включен УЗИП, с одной стороны он подключен к фазному проводу после , с другой — к заземлению.

В нормальном режиме работы напряжение цепи составляет 220 Вольт, при таком напряжении варистор УЗИПа обладает высоким сопротивлением измеряющимся тысячами МегаОм, настолько высокое сопротивление варистора препятствует протеканию тока через УЗИП.

Что же происходит при возникновении в цепи импульса высокого напряжения, например, в результате удара молнии (грозового воздействия).

На схеме видно что при возникновении импульса в цепи резко возрастает напряжение, что в свою очередь вызывает мгновенное, многократное уменьшение сопротивления УЗИПа (сопротивление варистора УЗИПа стремится к нулю), уменьшение сопротивление приводит к тому, что УЗИП начинает проводить электрически ток, закорачивая электрическую цепь на землю, т.е. создавая короткое замыкание которое приводит к срабатыванию автоматического выключателя и отключению цепи. Таким образом ограничитель импульсных перенапряжений защищает электрооборудование от протекания через него импульса высокого напряжения.

  1. Классификация УЗИП

Согласно ГОСТ Р 51992-2011 разработанного на основе международного стандарта МЭК 61643-1-2005 есть следующие классы УЗИП:

УЗИП 1 класс — (так же обозначается как класс B ) применяются для защиты от непосредственного грозового воздействия (удара молнии в систему), атмосферных и коммутационных перенапряжений. Устанавливаются на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ). Обязательно должен устанавливаться для отдельно стоящих зданий на открытой местности, зданий подключаемых к воздушной линии, а так же зданий имеющих молниеотвод или находящихся рядом с высокими деревьями, т.е. зданиях с высоким риском оказаться под прямым или косвенным грозовым воздействием. Нормируются импульсным с формой волны 10/350 мкс. Номинальный разрядный ток составляет 30-60 кА.

УЗИП 2 класс — (так же обозначается как класс С ) применяются для защиты сети от остатков атмосферных и коммутационных перенапряжений прошедших через УЗИП 1-го класса. Устанавливаются в местных распределительных щитках, например во вводном щитке квартиры или офиса. Нормируются импульсным током с формой волны 8/20 мкс Номинальный разрядный ток составляет 20-40 кА.

УЗИП 3 класс — (так же обозначается как класс D ) применяются для защиты электронной аппаратуры от остатков атмосферных и коммутационных перенапряжений, а так же высокочастотных помех прошедших через УЗИП 2-го класса. Устанавливаются в разветвительные коробки, розетки, либо встраивается непосредственно в само оборудование. Примером использования УЗИПа 3-го класса служат сетевые фильтры применяемые для подключения персональных компьютеров. Нормируются импульсным током с формой волны 8/20 мкс. Номинальный разрядный ток составляет 5-10 кА.

  1. Маркировка УЗИП — характеристики

Характеристики УЗИП:

  • Номинальное и максимальное напряжение — максимальное рабочее напряжение сети на работу под которым рассчитан УЗИП.
  • Частота тока — рабочая частота тока сети на работу при которой рассчитан УЗИП.
  • Номинальный разрядный ток (в скобках указана форма волны тока) — импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА), который УЗИП способен пропустить многократно.
  • Максимальный разрядный ток (в скобках указана форма волны тока) — максимальный импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА) который УЗИП способен пропустить один раз не выйдя при этом из строя.
  • Уровень напряжения защиты — максимальное значение падения напряжения в килоВольтах (кВ) на УЗИПе при протекании через него импульса тока. Данный параметр характеризует способность УЗИПа ограничивать перенапряжение.
  1. Схема подключения УЗИП

Общим условием при подключении УЗИП являетя наличие со стороны питающей сети предохранителя или соответствующего нагрузке сети, поэтому все представленные ниже схемы будут включать в себя автоматические выключатели (схему подключения УЗИП в электрощитке ):

Схемы подключения УЗИП (ОПС, ОИН) в однофазную сеть 220В (двухпроводную и трехпроводную):

Схемы подключения УЗИП (ОПС, ОИН) в трехфазную сеть 3800В

Принципиальные схемы подключения УЗИП выглядят следующим образом.

В современном доме находится немалое количество бытовой техники, приборов и электроники. При этом большинство частных домов получают энергию с помощью воздушной линии электропередачи (ЛЭП). В такой ситуации имеет смысл устройство защиты от импульсных перенапряжений, возникающих в сети при ударах молнии.

Ужасно выглядит удар молнии в дом

Причины возникновения и характер импульсов перенапряжения

Многие пожилые люди, покидая свое жилище на продолжительный срок, по старинке вынимают из розеток шнуры всех электроприборов, опасаясь молнии. В настоящее время линии электропередач относительно защищены от атмосферных воздействий, а в бытовой электронике имеется элементарная защита от импульсов напряжением до нескольких тысяч вольт.

Таким образом, в многоквартирном доме, к которому электроснабжение подается подземным кабелем, проблема защиты от грозы в значительной степени решена.

В случае энергоснабжения по воздуху необходимо принимать комплексные меры по защите от удара молнии.

Негативное воздействие атмосферного электричества может возникать:

  • при ударе молнии непосредственно в линию электропередачи рядом с домом, что приводит к возникновению импульса 10/350мкс (первое значение – время роста импульса, второе – время спада);
  • при попадании молнии в ЛЭП на дальнем расстоянии и образовании волны с характеристикой 8/20мкс;
  • при грозовом разряде в непосредственной близости и наведении на линию электропередачи электромагнитного импульса.

Варианты схем удара молнии

Классификация защиты от импульсов перенапряжения


Знакомые всем искровые разрядники

Заметим, что высоковольтные импульсы в сети могут также возникать в результате аварии на электрической подстанции или обрыва нулевого провода в трехфазной сети. В результате перечисленных воздействий отказывает бытовая техника, а также электрические коммутационные приборы. Если изоляция проводки в доме будет пробита, произойдет короткое замыкание, возгорание и пожар.


Вентильные разрядники на электрической подстанции

Основу ограничителя перенапряжения составляет варистор, то есть резистор, сопротивление которого меняется в зависимости от приложенного напряжения. ОПН более надежны, имеют меньшие размеры. В конкретной ситуации имеется возможность установить ограничители импульсного перенапряжения с наиболее подходящей характеристикой.

В низковольтных сетях, которые обеспечивают питание жилых домов, используют устройства защиты от импульсных перенапряжений (УЗИП). Эти малогабаритные приборы модульного типа делятся на три класса и могут быть применены владельцами жилья в собственных домах и квартирах.


Модульные УЗИП для монтажа в электрощите

Устройства I класса устанавливаются на вводном щите жилого дома. Они предназначены для защиты от близких ударов молнии (до 1,5км) и пропускают через себя токи от 25 до 100 тысяч ампер с характеристикой импульса 10/350мкс. УЗИП II класса монтируются в распределительном щите в качестве второй ступени защиты от удара молнии и пропускают через себя токи 10-40 тысяч ампер с характеристикой импульса 8/20мкс.

Устройства III класса гасят импульсы с характеристикой 8/20мкс и рассчитаны на токи до 10 кА. Они устанавливаются непосредственно у электроприборов. По конструктивному исполнению УЗИП III класса могут изготавливаться в виде модулей и монтироваться на din-рейку, а также встраиваться в розетку или в вилку потребителя энергии.

Нужна ли установка УЗИП в Вашем случае?


Стандартная электрическая схема подключения УЗИП в трехфазной сети

Классическая схема подключения УЗИП предусматривает последовательную установку устройств всех трех классов. Если ограничиться только устройством класса I, то оно может не сработать при относительно слабых импульсах. Наоборот, самое чувствительное УЗИП класса III не выполнит свою задачу при мощном воздействии.

Существуют стандарты и методики для расчета степени риска удара молнии и оценки последствий. В общем виде УЗИП класса I можно не устанавливать, если опоры линии электропередачи имеют заземление, заземлен нулевой провод, установлен громоотвод, и реализована система выравнивания потенциалов.

Однако, не обладая специальными знаниями в области электроснабжения, куда проще обеспечить стандартную схему защиты от импульсных скачков напряжения.

При этом в любом случае отрицательное воздействие грозового разряда сильно снижается при установке громоотвода. Если Вы этого еще не сделали, читайте статью

Как работают различные виды УЗИП

Устройства защиты от импульсных перенапряжений используют в своей конструкции разрядники или полупроводниковые приборы – варисторы. Последние нагреваются при срабатывании и плохо работают при повторении высоковольтных воздействий. Варистор должен остыть, чтобы вернуться в рабочее состояние. УЗИП модульного типа часто имеют индикаторы работоспособности и могут быть заменены при выходе из строя.


Электрическая схема работы УЗИП

При нормальном напряжении в сети ток проходит по проводникам к нагрузке. Во время скачка напряжения разрядник открывается и пропускает ток на землю. После возвращения напряжения в сети к рабочим значениям, элементы УЗИП снова закрываются, и электроснабжение протекает в обычном режиме.

Во время срабатывания устройства защиты через него протекает ток до десятков тысяч ампер. При этом выделяется большое количество энергии, то есть тепла.

Устройство защиты от импульсных скачков напряжения своими руками


Пример монтажа УЗИП в электрощите

Защита от грозовых перенапряжений может быть выполнена своими руками. УЗИП модульного типа устанавливают в вводном щите с корпусом из металла. При этом следует применять устройство, номинальный рабочий ток которого не меньше величины, ограниченной входным автоматом. Также напряжение ограничения УЗИП не должно быть ниже допустимого в Вашей сети.

УЗИП класса I подключается после входного автомата в однофазной или трехфазной сети. Сверху к устройству подводятся защищаемые линии электроснабжения, снизу – заземление. Ниже приводится вариант электромонтажной схемы подключения УЗИП класса I в однофазной сети.


Электромонтажная схема подключения УЗИП в однофазной сети

УЗИП класса II монтируется в распределительном щите внутри дома. Устройство защиты третьего класса устанавливается непосредственно у потребителей. Если ступени устройства защиты находятся рядом, между ними необходимо включать дроссели для согласования. В противном случае УЗИП с большей чувствительностью примет весь ток нагрузки на себя. Если расстояние между приборами защиты более 10м, роль дросселей выполнит электропроводка.

Тема выбора и подключения устройств защиты от грозовых перенапряжений не является простой для неспециалистов. В сложных случаях лучше обратиться в специализированную организацию.

Если в вашем доме установлено множество дорогой бытовой техники, лучше позаботиться об организации комплексной защиты электросети. В этой статье мы расскажем об устройствах защиты от импульсных перенапряжений, зачем они нужны, какие бывают и как устанавливаются.

Природа импульсных перенапряжений и их влияние на технику

Многим с детства знакома суета с отключением от сети бытовых электроприборов при первых признаках надвигающейся грозы. Сегодня электрооборудование городских сетей стало более совершенным, из-за чего многие пренебрегают элементарными устройствами защиты. В то же время проблема не исчезла совсем, бытовая техника, особенно в частных домах, все еще находится в зоне риска.

Характер возникновения импульсных перенапряжений (ИП) может быть природным и техногенным. В первом случае ИП возникают из-за попадания молнии в воздушные ЛЭП, причем расстояние между точкой попадания и подверженными риску потребителями может составлять до нескольких километров. Возможен также удар в радиомачты и молниеотводы , подключенные к основному заземляющему контуру, в этом случае в бытовой сети появляется наведенное перенапряжение.

1 — удаленный удар молнии в ЛЭП; 2 — потребители; 3 — контур заземления; 4 — близкий удар молнии в ЛЭП; 5 — прямой удар молнии в громоотвод

Техногенные ИП непредсказуемы, они возникают в результате коммутационных перегрузок на трансформаторных и распределительных подстанциях. При несимметричном повышении мощности (только на одной фазе) возможен резкий скачок напряжения, предусмотреть такое почти невозможно.

Импульсные напряжения очень коротки по времени (менее 0,006 с), они появляются в сети систематически и чаще всего проходят незаметно для наблюдателя. Бытовая техника рассчитана выдерживать перенапряжения до 1000 В, такие появляются наиболее часто. При более высоком напряжении гарантирован выход из строя блоков питания, возможен также пробой изоляции в проводке дома, что приводит к множественным коротким замыканиям и пожару.

Как устроен и как работает УЗИП

УЗИП, в зависимости от класса защиты, может иметь полупроводниковое устройство на варисторах, либо иметь контактный разрядник. В нормальном режиме УЗИП работает в режиме байпаса, ток внутри него протекает через проводящий шунт. Шунт соединен с защитным заземлением через варистор или двумя электродами со строго нормируемым зазором.

При скачке напряжения, даже очень непродолжительном, ток проходит через эти элементы и растекается по заземлению или компенсируется резким падением сопротивления в петле фаза-ноль (короткое замыкание). После стабилизации напряжения разрядник теряет пропускную способность, и устройство снова работает в нормальном режиме.

Таким образом, УЗИП на некоторое время замыкает цепь, чтобы переизбыток напряжения мог преобразоваться в тепловую энергию. Через устройство при этом проходят значительные токи — от десятков до сотни килоампер.

В чем различие между классами защиты

В зависимости от причин возникновения ИП, различают две характеристики волны повышенного напряжения: 8/20 и 10/350 микросекунд. Первая цифра — это время, за которое ИП набирает максимальное значение, вторая — время спада до номинальных значений. Как видно, второй тип перенапряжений более опасный.

Устройства I класса предназначены для защиты от ИП с характеристикой 10/350 мкс, наиболее часто возникающих при разряде молнии в ЛЭП ближе 1500 м к потребителю. Устройства способны кратковременно пропустить через себя ток от 25 до 100 кА, практически все приборы I класса основаны на разрядниках.

УЗИП II класса ориентированы на компенсацию ИП с характеристикой 8/20 мкс, пиковые значения тока в них колеблются от 10 до 40 кА.

Класс защиты III предназначен для компенсации перенапряжений со значениями тока менее 10 кА при характеристике ИП 8/20 мкс. Устройства класса защиты II и III основаны на полупроводниковых элементах.

Может показаться, что достаточно установки только устройств класса I, как наиболее мощных, но это не так. Проблема в том, что чем выше нижний порог пропускного тока, тем менее чувствителен УЗИП. Другими словами: при коротких и относительно низких значениях ИП мощный УЗИП может не сработать, а более чувствительный не справится с токами такой величины.

Устройства с классом защиты III рассчитаны на устранение самых низких ИП — всего в несколько тысяч вольт. Они полностью аналогичны по характеристикам устройствам защиты, устанавливаемым производителями в блоках питания бытовой техники. При дублирующей установке они первыми принимают на себя нагрузку и предотвращают срабатывание УЗИП в приборах, ресурс которых ограничен 20-30 циклами.

Есть ли необходимость в УЗИП, оценка рисков

Полный перечень требований к организации защиты от ИП изложен в МЭК 61643-21, определить обязательность установки можно по стандарту МЭК 62305-2, согласно которому устанавливается конкретная оценка степени риска удара молнии и вызванных им последствий.

В целом при электроснабжении от воздушных ЛЭП установка УЗИП I класса почти всегда предпочтительна, если только не был выполнен комплекс мероприятий по снижению влияния гроз на режим электроснабжения: повторное заземление опор, PEN-проводника и металлических несущих элементов, устройство громоотвода с отдельным контуром заземления, установка систем уравнивания потенциалов.

Более простой способ оценить риск — сопоставить стоимость незащищенной бытовой техники и устройств защиты. Даже в многоэтажных домах, где перенапряжения имеют весьма низкие значения при характеристике 8/20, риск пробоя изоляции или выхода из строя приборов достаточно велик.

Установка устройств в ГРЩ

Большинство УЗИП имеют модульное исполнение и могут быть установлены на DIN-рейку 35 мм. Единственное требование — щит для установки УЗИП должен иметь металлический корпус с обязательным подключением к защитному проводнику.

При выборе УЗИП, помимо основных рабочих характеристик, следует учитывать также номинальный рабочий ток в режиме байпаса, он должен соответствовать нагрузке в вашей электросети. Другой параметр — максимальное напряжение ограничения, оно не должно быть ниже самого высокого значения в рамках суточных колебаний.

УЗИП подключаются последовательно к питающей однофазной или трехфазной сети, соответственно через двухполюсный и четырехполюсный автоматический выключатель. Его установка необходима на случай спаивания электродов разрядника или пробоя варистора, что вызывает постоянное короткое замыкание. На верхние клеммы УЗИП подключают фазы и защитный проводник, на нижние — нулевой.

Пример подключения УЗИП: 1 — ввод; 2 — автоматический выключатель; 3 — УЗИП; 4 — шина заземления; 5 — контур заземления; 6 — счетчик электроэнергии; 7 — дифференциальный автомат; 8 — к автоматам потребителей

При установке нескольких защитных устройств с разными классами защиты требуется их согласование с помощью специальных дросселей, подключенных последовательно с УЗИП. Защитные устройства встраиваются в цепь по возрастанию класса. Без согласования более чувствительные УЗИП будут принимать основную нагрузку на себя и раньше выйдут из строя.

Установки дросселей можно избежать, если протяженность кабельной линии между устройствами превышает 10 метров. По этой причине УЗИП I класса монтируют на фасаде еще до счетчика, защищая от перенапряжений учетный узел, а второй и третий класс устанавливают, соответственно, на ВРУ и этажных/групповых щитках.