Свойства инструментальных материалов. Основные характеристики инструментальных материалов Инструментальные инструменты

В наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Для обеспечения работоспособности металлорежущего инструмента необходимо изготовлять его рабочую часть из материала, обладающего комплексом определенных физико-механических свойств (высокими показателями твердости, износостойкости, прочности, теплостойкости и др.). Материалы, отвечающие требованиям этого комплекса и способные осуществлять резание, называются инструментальными материалами. Рассмотрим физи- ко-механические свойства инструментальных материалов.

Чтобы внедриться в поверхностные слои обрабатываемой заготовки, режущие лезвия рабочей части инструментов должны быть выполнены из материалов, имеющих высокую твердость. Твердость инструментальных материалов может быть природной (т. е. свойственной материалу при его образовании) или достигнута специальной обработкой. Например, инструментальные стали в состоянии поставки с металлургических заводов легко поддаются обработке резанием. После механической обработки, термообработки, шлифования и заточки инструментов из стали их прочность и твердость резко повышаются.

Твердость определяется с помощью различных методов. Твердость по Роквеллу обозначается цифрами, характеризующими число твердости, и буквами HR с указанием шкалы твердости А, В или С (например, HRC). Твердость термообработанных инструментальных сталей измеряется по шкале С Роквелла и выражается в условных единицах HRC. Наиболее устойчивый режим работы и наименьшая изнашиваемость лезвий инструментов, изготовленных из инструментальных сталей и прошедших термообработку, достигается при твердости HRC 63 ...64. При меньшей твердости возрастает изнашиваемость лезвий инструмента, а при большей твердости лезвия начинают выкрашиваться из-за чрезмерной хрупкости.

Металлы, имеющие твердость HRC 30... 35, удовлетворительно обрабатываются инструментами из термообработанных инструментальных сталей (HRC 63...64), т. е. при отношении твердостей, примерно равном двум. Для обработки термообработанных металлов (HRC 45...55) необходимо использовать инструменты, изготовленные только из твердых сплавов. Их твердость измеряется по шкале А Роквелла и имеет значения HRA 87...93. Высокая твердость синтетических инструментальных материалов позволяет использовать их для обработки закаленных сталей.

В процессе резания на рабочую часть инструментов действуют силы резания, достигающие 10 кН и более. Под действием этих сил в материале рабочей части возникают большие напряжения. Чтобы эти напряжения не приводили к разрушению инструмента, используемые для его изготовления инструментальные материалы должны иметь достаточно высокую прочность.

Среди всех инструментальных материалов наилучшим сочетанием прочностных характеристик обладают инструментальные стали. Благодаря этому рабочая часть инструментов, выполненных из инструментальных сталей, успешно выдерживает сложный характер нагружения и может работать на сжатие, кручение, изгиб и растяжение.

В результате интенсивного выделения теплоты в процессе резания металлов нагреваются лезвия инструмента, причем в наибольшей степени - их поверхности. При температуре нагрева ниже критической (для различных материалов она имеет разные значения) структурное состояние и твердость инструментального материала не изменяются. Если температура нагрева превышает критическую, то в материале происходят структурные изменения и связанное с этим снижение твердости. Критическая температура называется также температурой красностойкости. В основе термина «красностойкость» лежит физическое свойство металлов при нагреве до 600 °С излучать темно-красный свет. Красностойкость - это способность материала сохранять при повышенных температурах высокие твердость и износостойкость. По своей сути красностойкость означает температуростойкость инструментальных материалов. Температуростойкость различных инструментальных материалов изменяется в широких пределах: 220... 1800°С.

Увеличение работоспособности режущего инструмента может быть достигнуто не только за счет повышения температуростой кости инструментального материала, но и благодаря улучшению условий отвода теплоты, выделяющейся в процессе резания на лезвии инструмента и вызывающей его нагрев до высоких температур. Чем большее количество теплоты отводится от лезвия в глубь инструмента, тем ниже температура на его контактных поверхностях. Теплопроводность инструментальных материалов зависит от их химического состава и температуры нагрева.

Например, присутствие в стали таких легирующих элементов, как вольфрам и ванадий, снижает теплопроводящие свойства инструментальных сталей, а легирование их титаном, кобальтом и молибденом, наоборот, заметно повышает.

Значение коэффициента трения скольжения материала заготовки по инструментальному материалу зависит от химического состава и физико-механических свойств материалов контактирующих пар, а также от контактных напряжений на трущихся поверхностях и скорости скольжения.

Коэффициент трения связан функциональной зависимостью с силой трения и работой сил трения на пути взаимного скольжения инструмента и заготовки, поэтому значение этого коэффициента оказывает влияние на износостойкость инструментальных материалов.

Взаимодействие инструмента с обрабатываемым материалом протекает в условиях постоянного (подвижного) контакта. При этом оба тела, образующие пару трения, взаимно изнашиваются.

Материал каждого из взаимодействующих тел обладает:

  • свойством истирать материал, с которым он взаимодействует;
  • износостойкостью, т.е. способностью материала сопротивляться истирающему действию другого материала.

Изнашивание лезвий инструмента происходит на протяжении всего периода взаимодействия с обрабатываемым материалом. В результате этого лезвия инструмента теряют некоторую часть своих режущих свойств, изменяется форма рабочих поверхностей инструмента.

Износостойкость не является неизменным свойством инструментальных материалов, она зависит от условий резания.

Современные инструментальные материалы отвечают требованиям, рассмотренным выше. Они подразделяются на следующие группы:

  • инструментальные стали;
  • твердые сплавы (металлокерамика);
  • минералокерамика и керметы;
  • синтетические композиции из нитрида бора;
  • синтетические алмазы.

Инструментальные стали разделяют на углеродистые, легированные и быстрорежущие.

Углеродистые инструментальные стали применяют для изготовления инструмента, работающего при малых скоростях резания.

Марки таких сталей обозначают буквой У (углеродистая), затем цифрами, которые показывают содержание в стали углерода (в десятых долях процента), буква А в конце марки означает, что сталь высококачественная (содержание серы и фосфора не более 0,03 % каждого элемента).

Основными свойствами углеродистых инструментальных сталей являются высокая твердость (HRC 62...65) и низкая температуростойкость.

Из стали марок У9 и У10А изготовляют пилы; из стали марок У11; У11А; У12 - ручные метчики и др.

Температуростойкость сталей марок У10А...У13А 220 °С, поэтому инструмент из этих сталей рекомендуется применять при скорости резания 8... 10 м/мин.

Легированная инструментальная сталь в зависимости от основных легирующих элементов может быть хромистой (X), хромо- кремнистой (ХС), вольфрамовой (В), хромовольфрамомарганце- вой (ХВГ) и др.

Марки таких сталей обозначают цифрами и буквами (первыми буквами названия легирующих элементов). Первая цифра слева от букв показывает содержание углерода в десятых долях процента (если содержание углерода менее 1 %), цифры справа от букв показывают среднее содержание легирующего элемента в процентах.

Из стали марки X изготовляют метчики и плашки, из стали 9ХС - сверла, развертки, метчики и плашки. Сталь В1 рекомендуется для изготовления мелких сверл, метчиков и разверток.

Температуростойкость легированных инструментальных сталей 350...400°С, поэтому допустимые скорости резания для инструмента из этих сталей в 1,2... 1,5 раза выше, чем для инструмента из углеродистых инструментальных сталей.

Быстрорежущие (высоколегированные) стали применяют чаще всего для изготовления сверл, зенкеров и метчиков. Марки быстрорежущих сталей обозначают буквами и цифрами, например Р6МЗ. Буква Р означает, что сталь быстрорежущая, цифры после нее показывают среднее содержание вольфрама в процентах, остальные буквы и цифры обозначают то же, что и в марках легированных сталей. Важнейшими компонентами быстрорежущих сталей являются вольфрам, молибден, хром и ванадий.

Быстрорежущие стали в зависимости от режущих свойств делят на стали нормальной и повышенной производительности. К сталям нормальной производительности относятся вольфрамовые стали марок Р18; Р9; Р9Ф5 и вольфрамомолибденовые стали марок Р6МЗ; Р6М5, сохраняющие твердость не менее HRC 58 до температуры 620 °С. К сталям повышенной производительности относятся стали марок Р18Ф2; Р14Ф4; Р6М5К5; Р9М4К8; Р9К5; Р9К10; Р10К5Ф5; Р18К5Ф2, сохраняющие твердость HRC 64 до температуры 630...640°С.

Стали нормальной производительности - твердость HRC 65, температуростойкость 620 °С, предел прочности при изгибе 3 ...4 ГПа (300...400 кгс/мм 2) - предназначены для обработки углеродистых и низколегированных сталей с пределом прочности на изгиб до 1 ГПа (100 кгс/мм 2), серого чугуна и цветных металлов. Быстрорежущие стали повышенной производительности, легированные кобальтом или ванадием (твердость HRC 70...78, температуростойкость 630...650°С, предел прочности при изгибе 2,5...2,8 ГПа, или 250...280 кгс/мм 2), предназначены для обработки труднообрабатываемых сталей и сплавов, а с пределом прочности при изгибе свыше 1 ГПа (100 кгс/мм 2) - для обработки титановых сплавов.

Все инструменты, изготовленные из инструментальных сталей, подвергают термической обработке. Инструменты из быстрорежущей стали могут работать при более высоких скоростях резания, чем инструменты из углеродистой и легированной инструментальных сталей.

Твердые сплавы делят на металлокерамические и минералокерамические. Форма пластин, изготовленных из этих сплавов, зависит от их механических свойств. Инструменты, оснащенные пластинами из твердых сплавов, позволяют работать на более высоких скоростях резания по сравнению с инструментами из быстрорежущей стали.

Металлокерамические твердые сплавы подразделяют на вольфрамовые, вольфрамотитановые и титановольфрамотанталовые. Вольфрамовые сплавы группы ВК состоят из карбидов вольфрама и титана. Марки этих сплавов обозначают буквами и цифрой, например ВК2; ВКЗМ; ВК4; ВК6; ВК6М; ВК8; ВК8В. Буква В означает карбид вольфрама, буква К - кобальт, а цифра показывает содержание кобальта в процентах (остальное - карбид вольфрама). Буква М, приведенная в конце некоторых марок, означает, что сплав мелкозернистый. Инструмент, изготовленный из такого сплава, обладает повышенной износостойкостью, но его сопротивляемость ударам снижена. Инструменты из вольфрамовых твердых сплавов применяют для обработки чугуна, цветных металлов и их сплавов и неметаллических материалов (резины, пластмассы, фибры, стекла и др.).

Вольфрамотитановые сплавы группы ТК состоят из карбидов вольфрама, титана и кобальта. Марки этих сплавов обозначают буквами и цифрами, например Т5К10; Т5К12В; Т14К8; Т15К6; Т30К4; Т15К12В. Буква Т означает карбид титана, цифра за ней - процентное содержание карбида титана, буква К - карбид кобальта, цифра за ней - процентное содержание карбида кобальта (остальное в данном сплаве - карбид вольфрама). Инструменты из этих сплавов применяют для обработки всех видов сталей.

Вольфрамотитанотанталовые сплавы группы ТТК состоят из карбидов титана, вольфрама, тантала и кобальта. Для изготовления металлорежущего инструмента используют сплавы марок ТТ7К12 и ТТ10К8Б, содержащие соответственно 7 и 10% карбидов титана и тантала, 12 и 8% карбидов кобальта (остальное - карбид вольфрама). Инструмент из этих сплавов применяют в особо тяжелых условиях обработки, когда использование других инструментальных материалов неэффективно.

Твердые сплавы обладают высокой температуростойкостью. Вольфрамовые твердые сплавы сохраняют твердость HRC 83... 90, а вольфрамотитановые - HRC 87... 92 при температуре 800... 950 °С, что позволяет инструменту из сплавов работать при высоких скоростях резания (до 500 м/мин при обработке сталей и до 2700 м/мин при обработке алюминия).

Для обработки деталей из коррозионно-стойких, жаропрочных и других труднообрабатываемых сталей и сплавов предназначены инструменты из мелкозернистых сплавов группы ОМ: из сплава ВК6-ОМ - для чистовой обработки, а из сплавов ВК10-ОМ и ВК15-ОМ - для получистовой и черновой обработки. Еще более эффективно для обработки труднообрабатываемых материалов использование инструментов из твердых сплавов марок BK10-XOM и ВК15-ХОМ, в которых карбид тантала заменен карбидом хрома. Легирование сплавов карбидом хрома увеличивает их твердость и прочность при высоких температурах.

Для повышения прочности пластины из твердого сплава плакируют, т.е. покрывают защитными пленками. Широко применяют износостойкие покрытия из карбидов, нитридов и карбонидов титана, нанесенные тонким слоем (толщиной 5... 10 мкм) на поверхность твердосплавных пластин. На поверхности этих пластин образуется мелкозернистый слой карбида титана, обладающий высокой твердостью, износостойкостью и химической устойчивостью при высоких температурах. Износостойкость твердосплавных пластин с покрытием в среднем в три раза выше износостойкости пластин без покрытия, что позволяет увеличить скорость резания на 25... 30 %.

При определенных условиях в качестве инструментального материала применяют минералокерамические материалы, получаемые из окиси алюминия с добавками вольфрама, титана, тантала и кобальта.

Для режущего инструмента используют минералокерамику марки ЦМ-332, которая отличается высокой температуростойкостью (твердость HRC 89...95 при температуре 1200°С) и износостойкостью, что позволяет вести обработку стали, чугуна и цветных сплавов при высоких скоростях резания (например, чистовое обтачивание чугуна при скорости резания 3700 мм/мин, что в два раза выше скорости резания при обработке инструментом из твердых сплавов). Недостатком минералокерамики марки ЦМ-332 является повышенная хрупкость.

Для изготовления режущих инструментов применяют также режущую керамику (кермет) марок В3; ВОК-60; ВОК-63, представляющую собой оксидно-карбидное соединение (окись алюминия с добавкой 30...40% карбидов вольфрама и молибдена). Введение в состав минералокерамики карбидов металлов (а иногда и чистых металлов - молибдена, хрома) улучшает ее физико-ме- ханические свойства (в частности, снижает хрупкость) и повышает производительность обработки в результате повышения скорости резания. Получистовая и чистовая обработка инструментом из кермета деталей из серых, ковких чугунов, труднообрабатываемых сталей, некоторых цветных металлов и сплавов производится со скоростью резания 435... 1000 м/мин без подачи СОЖ (смазочно-охлаждающая жидкость) в зону резания. Режущая керамика отличается высокой температуростойко- стью (твердость HRC 90... 95 при температуре 950... 1100 °С).

Для обработки закаленных сталей (HRC 40...67), высокопрочных чугунов (НВ 200...600), твердых сплавов типа ВК25 и ВК15 и стеклопластиков применяют инструмент, режущая часть которого изготовлена из сверхтвердых материалов (СТМ) на основе нитрида бора и алмазов. При обработке деталей из закаленных сталей и высокопрочных чугунов применяют инструмент, изготовленный из крупных поликристаллов (диаметром 3...6 мм и длиной 4...5 мм) на основе кубического нитрида бора (эльбора Р). Твердость эльбора Р приближается к твердости алмаза, а его температуростойкость в два раза выше температуростойкости алмаза. Эльбор Р химически инертен к материалам на основе железа. Предел прочности поликристаллов при сжатии 4... 5 ГПа (400... 500 кгс/мм 2), при изгибе - 0,7 ГПа (70 кгс/мм 2), температуростойкость 1350... 1450°С.

Из других СТМ, применяемых для обработки резанием, следует отметить синтетические алмазы балас (марка АСБ) и карбонадо (марка АСПК). Карбонадо химически более активен к углерод-содержащим материалам, поэтому его используют при точении деталей из цветных металлов, высококремнистых сплавов, твердых сплавов ВК10... ВК30, неметаллических материалов. Стойкость резцов из карбонадов в 20... 50 раз выше стойкости резцов из твердых сплавов.

Высокие эксплуатационные характеристики режущих инструментов в значительной степени зависят от качества материала, из которого эти инструменты изготовлены. Материалы, предназначенные для режущих инструментов , должны по ряду показателей значительно превосходить материалы, применяемые в машиностроении для изготовления различных деталей.

Основные требования к инструментальным материалам следующие:

1. Инструментальный материал должен иметь высокую твердость - не менее 63... 66 НRС по Роквеллу (шкала С).

2. При резании металлов выделяется значительное количество теплоты и режущая часть инструмента нагревается. Температура рабочих поверхностей и режущих кромок инструмента может достигать нескольких сот градусов. Необходимо, чтобы при значительных температурах резания твердость поверхностей инструментов существенно не уменьшалась.

Способность материала сохранять высокую твердость при повышенных температурах и исходную твердость после охлаждения называется теплостойкостью.

Инструментальный материал должен обладать высокой теплостойкостью.

3. Наряду с теплостойкостью, инструментальный материал должен иметь высокую износостойкость при повышенной температуре, т. е. обладать хорошей сопротивляемостью истиранию обрабатываемым материалом.

4. Важным требованием является высокая прочность инструментального материала . Если высокая твердость материала рабочей части инструмента сопровождается значительной хрупкостью, это приводит к поломке инструмента и выкрашиванию режущих кромок.

5. Инструментальный материал должен обладать технологическими свойствами, обеспечивающими оптимальные условия изготовления из него инструментов.

Для инструментальных сталей ими являются :

  • хорошая обрабатываемость резанием и давлением;
  • малая чувствительность к перегреву и обезуглероживанию;
  • хорошие закаливаемость и прокаливаемость;
  • минимальные деформирование и образование трещин при закалке и т. д.;
  • хорошая шлифуемость после термической обработки.
  • Применение в промышленности труднообрабатываемых материалов и постоянный рост производительности труда, особенно в процессах обработки металлов резанием, требует создания новых методов обработки и новых металлорежущих инструментов из более эффективных инструментальных материалов.

    Производительность инструмента в значительной степени зависит от его способности сохранять определенное время режущие свойства. Режущие свойства ухудшаются не только под влиянием высокой температуры, повышающейся в процессе резания и вызывающей снижение твердости инструмента, но и таких явлений, как адгезия, диффузия, абразивно-механическое изнашивание режущей кромки и поверхностей инструмента.

    Способность инструмента сопротивляться указанным явлениям называется износостойкостью . Стойкость инструмента измеряется временем, в течение которого сохраняются его режущие свойства и на определенных условиях работы. Во избежание преждевременного разрушения режущей кромки необходимо, чтобы инструментальный материал был также достаточно прочным.

    Следовательно, инструментальные материалы независимо от их химического состава и способа производства, предназначенные для использования в качестве режущих элементов инструментов, должны иметь: твердость, превышающую твердость обрабатываемых металлов; высокую износостойкость; красностойкость; механическую прочность в сочетании с достаточной пластичностью. Перечисленные свойства определяют физико-механические характеристики инструментальных материалов. Однако не все инструментальные материалы обладают одинаково высокими физико-механическими свойствами. Они изменяются в зависимости от химического состава, структурного состояния, от условия взаимодействия инструментального материала с металлом обрабатываемой детали в процессе резания и от его устойчивости при изменяющихся температурах.

    Классификация инструментальных материалов по химическому составу и физико-механическим свойствам

    Классификация инструментальных материалов по химическому составу и физико-механическим свойствам приведена на рис. 1, из которого видно, что в настоящее время материалы режущих инструментов делятся на четыре группы и отличаются значительной номенклатурой, В соответствии с этим различные режущие материалы должны иметь свои рациональные области применения.


    Рисунок 1. Классификация современных инструментальных режущих материалов

    Материалы, относящиеся к II — IV группам, имеют повышенные режущие свойства и поэтому являются прогрессивными.

    Прогрессивные режущие материалы благодаря повышенной теплостойкости и износостойкости, в сравнении с инструментальными сталями, обеспечивают при резании инструментом работу на повышенных скоростях резания, обработку металлов с высокой твердостью, чем способствуют повышению производительности труда и эффективности технологического процесса. Производительность процесса механической обработки зависит не только от скорости резания, но и от величины подачи и глубины резания. Эти параметры определяют площадь среза и соответственно силу резания, воздействующую на режущую часть инструмента, вызывая сложные напряжения в режущем клине. Поэтому одной из основных механических характеристик инструментального режущего материала является прочность на изгиб. Однако в природе не существует материалов, обладающих одновременно высокой, твердостью, износостойкостью и прочностью.

    Относительное расположение инструментальных материалов по износостойкости и прочности показано на рис. 2.

    Рисунок 2. Относительное расположение режущих материалов по их износостойкости и прочности на изгиб его проектирования с учетом физико-механических свойств материала и факторов режима резания.

    Ученые материаловеды работают над созданием новых материалов и совершенствованием существующих в направлении одновременного повышения вышеуказанных свойств материалов.

    Перед студентами-инструментальщиками и технологами стоит задача рационального выбора режущего материала для конкретного инструмента и вида обработки.

    К основным достижениям последнего времени в области прогрессивных режущих материалов можно отнести:

    1. повышение качества металлокерамических вольфрамотитанокобальтовых твердых сплавов;
    2. разработку маловольфрамовых твердых сплавов;
    3. разработку и совершенствование безвольфрамовых твердых сплавов;
    4. повышение режущей способности сплавов за счет нанесения покрытий карбидом титана, нитридом титана, карбонитридами и оксидами различных металлов;
    5. разработку и совершенствование оксидно-карбидной минералокерамики;
    6. создание поликристаллов синтетических сверхтвердых материалов на основе углерода и нитрида бора.

    Качество инструментального материала определяется комплексом механических и физико-химических свойств:

    • пределом прочности при одноосном растяжении и сжатии;
    • температурной зависимостью предела текучести или твердости;
    • температурной зависимостью предела выносливости;
    • температурной зависимостью интенсивности адгезии с обрабатываемым материалом;
    • модулем упругости, температурным коэффициентом линейного расширения, коэффициентом Пуассона;
    • тепло- и температуропроводностью;
    • температурной зависимостью скорости взаимного растворения инструментального и обрабатываемого материалов;
    • температурной зависимостью скорости окисления.

    Сравнение основных физико-механических свойств групп режущих материалов приведено в табл. 1. Керметы, занимающие по режущим характеристикам промежуточное значение между твердым сплавом и быстрорежущей сталью, не включены в табл. 1.

    Материал Плотность?, 10 3 кг/м 3 Микротвердость HV,10 7 Па Предел прочности при сжатии? сж. МПа Предел прочности при изгибе? из, МПа Модуль продольной упругости Е, ГПа Теплопроводность, Вт / (м* К) Теплостойкость, °C
    Твердые сплавы 11…80
    Минералокерамика: оксидная
    оксидно-карбидняя
    Сверхтвердый кубический нитрид бора
    синтетическийалмаз

    Новые инструментальные материалы обычно имеют ограниченную область применения, – поэтому они будут дополнять, а не заменять основные виды инструментальных материалов. Сложность процесса стружкообразования, особенно в условиях прерывистого резания и при высоких температурах, не позволяет в настоящее время прогнозировать режущую способность новых инструментальных материалов при всех условиях обработки.

    Усовершенствованные существовавшие и созданные новые прогрессивные режущие материалы обладают повышенными режущими свойствами и позволяют обрабатывать резанием все конструкционные материалы.

    Инструментальные материалы должны иметь высокую твердость, остающуюся достаточной и при высокой температуре, чтобы осуществлять внедрение инструмента в менее твердый конструкционный материал. Твердость должна сохранятся и при высоких температурах, то есть инструментальные материалы должны обладать высокой красностойкостью. Исходя из особенностей нагружения инструментов (консольное закрепление, ударные нагрузки, изгиб, растяжение, сжатие), их основными прочностными показателями считают пределы прочности на кручение, изгиб и сжатие, а также ударную вязкость. Необходимость противостоять интенсивному истиранию ставит задачу создания износостойких инструментальных материалов. Кроме того, они должны быть технологичными и иметь невысокую стоимость.

    Углеродистые инструментальные стали марок У7А, У8А, У10А и другие используют для изготовления инструментов с твердостью HRC = 60-62 после термообработки; красностойкость сталей - до 200-250 °С, допустимые скорости резания - 15-18 м/мин. Применяются в производстве напильников, зубил, метчиков, плашек, ножовочных полотен и других инструментов.

    Красностойкость легированных инструментальных сталей достигает 250-300 °С, допустимые скорости резания - 15-25 м/мин. Эти стали незначительно деформируются при термической обработке, поэтому из них изготавливают сложные по конфигурации инструменты: плашки, зубила, метчики, развертки, сверла, резцы, фрезы, протяжки и др.

    Из быстрорежущих сталей изготавливают режущий инструмент с твердостью HRC = 62-65. После термообработки красностойкость таких сталей сохраняется до 640 °С, скорость резания - до 80 м/мин. Из стали Р9 изготавливают инструменты простой формы (резцы, фрезы, зенкеры и др.), из стали Р18 - сложные инструменты с высокой износостойкостью (метчики, плашки, зуборезный инструмент). Широко распространена быстрорежущая сталь марки Р6М5. Имеются быстрорежущие стали с малым содержанием вольфрама (11АРМЗФ2) или без него (11М5Ф). Все шире применяют инструменты из быстрорежущих сталей с износостойкими покрытиями. Так, тонкие покрытия нитрида титана увеличивают срок службы инструмента в 2-5 раз.

    Твердые сплавы , обладающие высокой износостойкостью, твердостью (HRA = 86-92) и красностойкостью (800-1000 °С), пригодны для скоростей обработки до 800 м/мин. Однокарбидные твердые сплавы марок ВК2, ВК4, ВК6, ВК8 имеют хорошее сопротивление ударным нагрузкам, используются для обработки чугунов, цветных металлов и их сплавов, неметаллических материалов. Двухкарбидные твердые сплавы марок Т5К10, Т14К18, Т15К6, Т30К4 менее прочны, но более износостойки, чем сплавы первой группы. Находят применение при обработке пластичных и вязких металлов и сплавов, углеродистых и легированных сталей. Трехкарбидный твердый сплав марки ТТ7К12 обладает повышенной прочностью, износостойкостью и вязкостью, его применяют для обработки жаропрочных сталей, титановых сплавов и других труднообрабатываемых материалов.

    С целью повышения износостойкости без снижения прочности твердых сплавов используют особо мелкие зерна карбида вольфрама (ВК6-ОМ). Инструменты оснащают также пластинками с тонкими покрытиями (толщиной 5-10 мкм) из износостойких материалов (карбида, нитрида или карбонитрида титана и др.). Это повышает их стойкость в 5-6 раз. Есть и безвольфрамовые твердые сплавы марок ТМ1, ТМЗ, ТН-20, КНТ-16, создаваемые на основе карбидов или других соединений титана с добавками молибдена, никеля и других тугоплавких металлов.

    Минералокерамика - синтетический материал, основой которого служит глинозем (А1 2 О э), спеченный при температуре 1720-1750 °С. Минералокерамика марки ЦМ-332 характеризуется красностойкостью 1200 °С. Инструменты, приготовленные из этого материала, имеют высокую износостойкость и размерную стабильность, характеризуются отсутствием налипания металла на инструмент; их недостаток - низкая прочность и хрупкость. Пластинки из минералоке- рамики крепят механическим путем или пайкой, предварительно подвергнув их металлизации. С целью улучшения эксплуатационных свойств в минералокерамику добавляют вольфрам, молибден, титан, никель и др. Такие материалы называются керметами. Пластинки из минералокерамики применяют для безударной обработки заготовок из сталей и цветных сплавов.

    Находят применение в инструментах и сверхтвердые материалы (СТМ). К ним относятся материалы на основе кубического нитрида бора, композиты. Режущими пластинками из композитов снабжаются резцы и фрезы.

    Абразивные материалы представляют собой порошковые мелкозернистые вещества, используемые для производства абразивных инструментов: шлифовальных кругов, лент, брусков, сегментов, головок. Естественные абразивные материалы (наждак, кварцевый песок, корунд) характеризуются значительным разбросом свойств, поэтому применяются редко.

    Абразивные инструменты в машиностроении изготавливают из искусственных материалов: электрокорундов, карбидов кремния, карбидов бора, оксида хрома и ряда новых материалов. Все они отличаются высокими свойствами: красностойкостью (1800-2000 °С), износостойкостью и твердостью. Так, микротвердость карбидов бора составляет 43% от микротвердости алмаза, карбидов кремния - 35% и электрокорунда - 25%. Обработку абразивными инструментами ведут на скоростях 15-100 м/с на завершающих этапах технологических процессов по изготовлению деталей машин.

    Шлифовальные и полировальные пасты содержат в своем составе оксид хрома. Из новых материалов в качестве абразивов для обработки твердых сплавов используют эльбор, представляющий собой поликристаллические образования на основе нитрида бора кубического или гексагонального строения.

    В промышленности широкое распространение получили различные алмазные инструменты. Используют естественные (А) и синтетические (АС) алмазы, отличающиеся высокими твердостью, красностойкостью, износостойкостью и размерной стойкостью. Обработка алмазными инструментами характеризуется высокой точностью, малой шероховатостью поверхности и повышенной производительностью.

    КОНТРОЛЬНЫЕ ВОПРОСЫ

    • 1. Какие движения осуществляются рабочими органами станка? Какое из них называют движением резания?
    • 2. Какова геометрия токарного проходного резца?
    • 3. Какие физические явления сопровождают процесс резания?

    История развития обработки металлов показывает, что одним из эффективных путей повышения производительности труда в машиностроении является применение новых инструментальных материалов. Например, применение быстрорежущей стали вместо углеродистой инструментальной, позволило увеличить скорость резания в 2...3 раза. Это потребовало существенно усовершенствовать конструкцию металлорежущих станков, прежде всего увеличить их быстроходность и мощность. Аналогичное явление наблюдалось также при использовании в качестве инструментального материала твердых сплавов.

    Инструментальный материал должен иметь высокую твердость, чтобы в течение длительного времени срезать стружку. Значительное превышение твердости инструментального материала по сравнению с твердостью обрабатываемой заготовки должно сохраняться и при нагреве инструмента в процессе резания. Способность материала инструмента сохранять свою твердость при высокой температуре нагрева определяет его красностойкость (теплостойкость). Режущая часть инструмента должна обладать большой износостойкостью в условиях высоких давлений и температур.

    Важным требованием является также достаточно высокая прочность инструментального материала, так как при недостаточной прочности происходит выкрашивание режущих кромок либо поломка инструмента, особенно при их небольших размерах.

    Инструментальные материалы должны обладать хорошими технологическими свойствами, т.е. легко обрабатываться в процессе изготовления инструмента и его переточек, а также быть сравнительно дешевыми.

    В настоящее время для изготовления режущих элементов инструментов применяются инструментальные стали (углеродистые, легированные и быстрорежущие), твердые сплавы, минералокерамические материалы, алмазы и другие сверхтвердые и абразивные материалы.

    ИНСТРУМЕНТАЛЬНЫЕ СТАЛИ

    Режущие инструменты, изготовленные из углеродистых инструментальных сталей У10А, У11А, У12А, У13А, обладают достаточной твердостью, прочностью и износостойкостью при комнатной температуре, однако теплостойкость их невелика. При температуре 200-250 "С их твердость резко уменьшается. Поэтому они применяются для изготовления ручных и машинных инструментов, предназначенных для обработки мягких металлов с низкими скоростями резания, таких, как напильники, мелкие сверла, развертки, метчики, плашки и др. Углеродистые инструментальные стали имеют низкую твердость в состоянии поставки, что обеспечивает их хорошую обрабатываемость резанием и давлением. Однако они требуют применения при закалке резких закалочных сред, что усиливает коробление инструментов и опасность образования трещин.

    Инструменты из углеродистых инструментальных сталей плохо шлифуются из-за сильного нагревания, отпуска и потери твердости режущих кромок. Из-за больших деформаций при термической обработке и плохой шлифуемости углеродистые инструментальные стали не используются при изготовлении фасонных инструментов, подлежащих шлифованию по профилю.

    С целью улучшения свойств углеродистых инструментальных сталей были разработаны низколегированные стали. Они обладают большей прокаливаемостью и закаливаемостью, меньшей чувствительностью к перегреву, чем углеродистые стали, и в то же время хорошо обрабатываются резанием и давлением. Применение низколегированных сталей уменьшает количество бракованных инструментов.

    Область применения низколегированных сталей та же, что и для углеродистых сталей.

    По теплостойкости легированные инструментальные стали незначительно превосходят углеродистые. Они сохраняют высокую твердость при нагреве до 200-260°С и поэтому непригодны для резания с повышенной скоростью, а также для обработки твердых материалов.

    Низколегированные инструментальные стали подразделяются на стали неглубокой и глубокой прокаливаемости. Для изготовления режущих инструментов используются стали 11ХФ, 13Х, ХВ4, В2Ф неглубокой прокаливаемости и стали X, 9ХС, ХВГ, ХВСГ глубокой прокаливаемости.

    Стали неглубокой прокаливаемости, легированные хромом (0,2-0,7%), ванадием (0,15-0,3%) и вольфрамом (0,5-0,8%) используются при изготовлении инструментов типа ленточных пил и ножовочных полотен. Некоторые из них имеют более специализированное применение. Например, сталь ХВ4 рекомендуется для изготовления инструментов, предназначенных для обработки материалов, имеющих высокую поверхностную твердость, при относительно небольших скоростях резания.

    Характерной особенностью сталей глубокой прокаливаемости является более высокое содержание хрома (0,8-1,7 %), а также комплексное введение в относительно небольших количествах таких легирующих элементов, как хром, марганец, кремний, вольфрам, ванадий, что существенно повышает прокаливаемость. В производстве инструментов из рассматриваемой группы наибольшее применение находят стали 9ХС и ХВГ. У стали 9ХС наблюдается равномерное распределение карбидов по сечению. Это позволяет использовать ее для изготовления инструментов относительно больших размеров, а также для резьбонарезных инструментов, особенно круглых плашек с мелким шагом резьбы. Вместе с тем сталь 9ХС имеет повышенную твердость в отожженном состоянии, высокую чувствительность к обезуглероживанию при нагреве.

    Содержащие марганец стали ХВГ, ХВСГ мало деформируются при термической обработке. Это позволяет рекомендовать сталь для изготовления инструмента типа протяжек, длинных метчиков, к которым предъявляются жесткие требования относительно стабильности размеров при термической обработке. Сталь ХВГ имеет повышенную карбидную неоднородность, особенно при сечениях, больших 30...40 мм, что усиливает выкрашивание режущих кромок и не позволяет рекомендовать ее для инструментов, работающих в тяжелых условиях. В настоящее время для изготовления металлорежущих инструментов применяются, быстрорежущие стали. В зависимости от назначения их можно разделить на две группы:

    1) стали нормальной производительности;

    2) стали повышенной производительности.

    К сталям первой группы относятся Р18, Р12, Р9, Р6МЗ, Р6М5, к сталям второй группы – Р6М5ФЗ, Р12ФЗ, Р18Ф2К5, Р10Ф5К5, Р9К5, Р9К10, Р9МЧК8, Р6М5К5 и др.

    В обозначении марок буква Р указывает, что сталь относится к группе быстрорежущих. Цифра, следующая за ней, показывает среднее содержание вольфрама в процентах. Среднее содержание ванадия в стали в процентах обозначается цифрой, проставляемой за буквой Ф, кобальта -цифрой, следующей за буквой К.

    Высокие режущие свойства быстрорежущей стали обеспечиваются за счет легирования сильными карбидообразующими элементами: вольфрамом, молибденом, ванадием и некарбидообразующим кобальтом. Содержание хрома во всех быстрорежущих сталях составляет 3,0-4,5 % и в обозначении марок не указывается. Практически во всех марках быстрорежущих сталей допускается серы и фосфора не более 0,3% и никеля не более 0,4%. Существенным недостатком этих сталей является значительная карбидная неоднородность, особенно в прутках большого сечения.

    С увеличением карбидной неоднородности прочность стали, снижается, при работе выкрашиваются режущие кромки инструмента, и снижается его стойкость.

    Карбидная неоднородность выражена сильнее в сталях с повышенным содержанием вольфрама, ванадия, кобальта. В сталях с молибденом карбидная неоднородность проявляется в меньшей степени.

    Быстрорежущая сталь Р18, содержащая 18% вольфрама, долгое время была наиболее распространенной. Инструменты, изготовленные из этой стали, после термической обработки имеют твердость 63-66 HRС Э, красностойкость 600 °С и достаточно высокую прочность. Сталь Р18 сравнительно хорошо шлифуется.

    Большое количество избыточной карбидной фазы делает сталь Р18 более мелкозернистой, менее чувствительной к перегреву при закалке, более износостойкой.

    Ввиду высокого содержания вольфрама сталь Р18 целесообразно использовать только для изготовления инструментов высокой точности, когда стали других марок нецелесообразно применять из-за прижогов режущей части при шлифовании и заточке.

    Сталь Р9 по красностойкости и режущим свойствам почти не уступает стали Р18. Недостатком стали Р9 является пониженная шлифуемость, вызываемая сравнительно высоким содержанием ванадия и присутствием в структуре очень твердых карбидов. Вместе с тем сталь Р9, по сравнению со сталью Р18, имеет более равномерное распределение карбидов, несколько большую прочность и пластичность, что облегчает ее деформируемость в горячем состоянии. Она пригодна для инструментов, получаемых различными методами пластической деформации. Из-за пониженной шлифуемости сталь Р9 применяют в ограниченных пределах.

    Сталь Р12 равноценна, по режущим свойствам стали Р18. По сравнению со сталью Р18 сталь Р12 имеет меньшую карбидную неоднородность, повышенную пластичность и пригодна для инструментов, изготовляемых методом пластической деформации. По сравнению со сталью Р9 сталь Р12 лучше шлифуется, что объясняется более удачным сочетанием легирующих элементов.

    Стали марок Р18М, Р9М отличаются от сталей Р18 и Р9 тем, что они в своем составе вместо вольфрама содержат до 0,6-1,0 %"молибдена (из расчета, что 1 % молибдена заменяет 2 % вольфрама). Эти стали имеют равномерно распределенные карбиды, но более склонны к обезуглероживанию. Поэтому закалку инструментов из сталей необходимо проводить в защитной атмосфере. Однако по основным свойствам стали Р18М и Р9М. не отличаются от сталей Р18 и Р9 и имеют ту же область применения.

    Вольфрамомолибденовые стали типа Р6МЗ, Р6М5 являются новыми сталями, значительно повышающими как прочность, так и стойкость инструмента. Молибден обусловливает меньшую карбидную неоднородность, чем вольфрам. Поэтому замена 6...10 % вольфрама соответствующим количеством молибдена снижает карбидную неоднородность быстрорежущих сталей примерно на 2 балла и соответственно повышает пластичность. Недостаток молибденовых сталей заключается в том, что они имеют повышенную чувствительность к обезуглероживанию.