Как самостоятельно починить светодиодный китайский карманный фонарик. Инструкции по ремонту светодиодных фонарей своими руками с наглядными фото и видео

Фото инструкция по ремонту светодиодного фонаря. Фото кликабельны.

Любой электрически прибор может сломаться. Это так же касается светодиодных фонарей
Интернет магазин дает гарантия до 3-х месяцев на все .

Все фонари проверяются при поступлении и повторно при продаже.
В большинстве случаев, ремонт фонаря вполне доступен обычному человеку со стандартным набором инструментов.

В 90% случаев, все поломки происходят из за нарушения контакта в цепи фонаря.

Проблема 1. Не включается светодиодный фонарик или мерцает при работе

Как правило, это причина плохого контакта. Самый простой способ лечения - плотно закрутить все резьбы.
Если фонарь не работает совсем, начните с проверки аккумулятора. Возможно он разряжен или вышел из строя.

Открутите задняя крышку фонаря и с помощью отвертки замкните корпус с минусовой контакт батареи. Если фонарик загорелся, значит проблема в модуле с кнопкой.

.

90% Кнопок всех светодиодных фонарей выполнены по одной схеме:
Корпус кнопки из алюминия с резьбой, туда вставляется колпачок из резины, далее сам модуль кнопку и прижимное кольцо для контакта с корпусом.

Проблема чаще всего решается в слабо зажатом прижимном кольце.
Для устранения этой неисправности достаточно найти круглогубцы с тонкими жалами или тонкие ножницы которые нужно вставить в отверстия, как на фото, и провернуть по часовой стрелке.



Если кольцо двигается, то проблема устранена. Если кольцо стоит на месте, значит проблема кроится в контакте модуля кнопки с корпусом. Выкрутите прижимное кольцо против часовой стрелки и вытащите модуль кнопки наружу.
ЧАсто плохой контакт бывает из за окисления алюминиевой поверхности кольца или каемки на печатной плате Указаны стрелками)
Достаточно просто протереть эти поверхности спиртом и функционал будет восстановлен.


Модули кнопок бывают разные. Одни у которых контакт идет через печатную плату, другие, у которых контакт идет через боковые лепестки на корпус фонаря.
Просто отогните такой лепесток вбок, чтобы контакт был плотнее.
Как вариант, можно сделать напайку из олова, чтобы поверхность была толще, и прижимался контакт лучше.
Все светодиодные фонари, в принципе устроены одинаково

Плюс идет через плюсовой контакт батареи в центр светодиодного модуля.
Минус идет через корпус и замыкается кнопкой.

Не лишним будет проверить плотность прилегания модуля светодиода внутри корпуса. Это так же частая проблема светодиодных фонарей.

Круглогубцами или щипцапи прокрутите модуль по часовой стрелке до упора. Будьте аккуратны, в этот момент легко повредить светодиод.

Этих действий должно быть вполне достаточно, чтобы восстановить функционал фонаря светодиодного.

Хуже, когда фонарь работает и режимы переключаются, но пучок очень тусклы, или фонарь вообще не работает и внутри запах гари.


Проблема 2. Фонарь работает нормально, но тускло, или не работает совсем и внутри запах гари

Скорее всего вышел из строя драйвер.
Драйвер - это электронная схема на транзисторах, которая управляет режимами фонаря а так же отвечает за постоянный уровень напряжения вне зависимости от разрядки аккумулятора.

Вам нужно выпаять сгоревший драйвер и впаять новый драйвер, либо соединить светодиод напрямую с аккумулятором. В этом случае вы теряете все режимы и остаетесь только с максимальным.

Иногда (гораздо реже) выходит из строя светодиод.
Проверить это можно очень просто. поднести к контактным площадкам светодиода напряжение 4.2 V/. Главное не перепутать полярность. Если светодиод горит ярко, то вышел из строя драйвер, если наоборот, то нужно заказывать новый светодиод.

Выкрутите модуль со светодиодом из корпуса.
Модули бывают разные, но как правило, они сделаны из меди или латуни и выкручиваются против часовой стрелки. Отпаять провода от звезды со светодиодом и вынуть драйвер.

Поработав около года, мой налобный фонарь LED Headlight XM-L T6 стал включаться через раз, а то и вообще отключаться без команды. Вскоре перестал включаться совсем.

Первым делом я подумал, что отходит аккумулятор в батарейном отсеке.

Для подсветки тылового индикатора LED HEADLIGHT используется обычный SMD-светодиод красного цвета свечения. На плате обозначен, как LED. Он подсвечивает пластину из белого пластика.

Так как батарейный отсек находится с тыльной части головы, то в ночное время суток такой индикатор хорошо заметен.

Явно не помешает при велопрогулках и ходьбе вдоль дорожных трасс.

Через резистор в 100 Ом плюсовой вывод красного SMD-светодиода подключается к стоку MOSFET-транзистора FDS9435A. Таким образом, при включении фонаря напряжение поступает и на основной светодиод Cree XM-L T6 XLamp, и на маломощный SMD-светодиод красного цвета свечения.

С основными детальками разобрались. Теперь расскажу, что же сломалось.

При нажатии на кнопку включения фонаря было видно, что красный SMD светодиод начинает светить, но очень тускло. Работа светодиода соответствовала штатным режимам работы фонаря (максимальная яркость, низкая яркость и стробоскоп). Стало ясно, что управляющая микросхема U1 (FM2819) скорее всего исправна.

Раз она штатно реагирует на нажатие кнопки, то, возможно, проблема кроется в самой нагрузке - мощном белом светодиоде. Отпаяв провода, идущие на светодиод Cree XM-L T6, и подключив его к самодельному блоку питания, я убедился в его исправности.

При замерах оказалось, что в режиме максимальной яркости, на стоке транзистора FDS9435A всего 1,2V. Естественно, этого напряжения не хватало для питания мощного светодиода Cree XM-L T6, а вот красному SMD-светодиоду его было достаточно, чтобы его кристалл начал тускло светиться.

Стало ясно, что неисправен транзистор FDS9435A, который задействован в схеме как электронный ключ.

В замену транзистору ничего подбирать не стал, а купил оригинальный P-канальный PowerTrench MOSFET FDS9435A фирмы Fairchild. Вот его внешний вид.

Как видим, на этом транзисторе присутствует полная маркировка и отличительный знак фирмы Fairchild (F ), выпустившей данный транзистор.

Сравнив оригинальный транзистор с тем, что установлен на плате, мне в голову закралась мысль о том, что в фонаре установлена подделка или менее мощный транзистор. Возможно, даже брак. Всё-таки фонарь не успел отслужить и года, а силовой элемент уже "отбросил копыта".

Цоколёвка транзистора FDS9435A выглядит следующим образом.

Как видим, внутри корпуса SO-8 находится всего лишь один транзистор. Выводы 5, 6, 7, 8 объединены и являются выводом стока (D rain). Выводы 1, 2, 3 также соединены вместе и являются истоком (S ource). 4-ый вывод - это затвор (G ate). Именно на него приходит сигнал с управляющей микросхемы FM2819 (U1).

В качестве замены транзистору FDS9435A можно использовать APM9435, AO9435, SI9435. Всё это аналоги.

Выпаять транзистор можно как привычными методами, так и более экзотическими, например, сплавом Розе. Также можно применить метод грубой силы - подрезать ножом выводы, демонтировать корпус, а затем отпаять оставшиеся на плате выводы.

После замены транзистора FDS9435A налобный фонарь стал работать исправно.

На этом рассказ о ремонте закончен. Но, не будь я любопытным радиомехаником, то так и оставил бы всё, как есть. Работает и ладно. Но мне не давали покоя некоторые моменты.

Так как изначально я не знал, что микросхема с маркировкой 819L (24) это FM2819, то вооружившись осциллографом, я решил посмотреть, какой сигнал подаёт микросхема на затвор транзистора при разных режимах работы. Интересно же.

При включении первого режима на затвор транзистора FDS9435A с микросхемы FM2819 подаётся -3,4...3,8V, которое практически соответствует напряжению на аккумуляторе (3,75...3,8V). Естественно, на затвор транзистора подаётся отрицательное напряжение, так как он P-канальный.

При этом транзистор полностью открывается и напряжение на светодиоде Cree XM-L T6 достигает 3,4...3,5V.

В режиме минимального свечения (1/4 яркости) на транзистор FDS9435A с микросхемы U1 приходит около 0,97V. Это если проводить замеры рядовым мультиметром без наворотов.

На самом же деле в этом режиме на транзистор приходит сигнал ШИМ (широтно-импульсная модуляция). Подключив щупы осциллографа между "+" питания и выводом затвора транзистора FDS9435A, я увидел вот такую картину.

Картинка ШИМ-сигнала на экране осциллографа (время/деление - 0,5; V/деление - 0,5). Время развёртки - mS (миллисекунды).

Так как на затвор поступает отрицательное напряжение, то "картинка" на экране осциллографа переворачивается. То есть сейчас на фото в центре экрана показан не импульс, а пауза между ними!

Сама пауза длится около 2,25 миллисекунд (mS) (4,5 деления по 0,5mS). В этот момент транзистор закрыт.

Затем транзистор открывается на 0,75 mS. При этом на светодиод XM-L T6 поступает напряжение. Амплитуда каждого импульса составляет 3V. А, как мы помним, мультиметром я намерил всего лишь 0,97V. В этом нет ничего удивительного, так как мультиметром я мерил постоянное напряжение.

Вот этот момент на экране осциллографа. Переключатель время/деление установил на 0,1, чтобы лучше определить длительность импульса. Транзистор открыт. Не забываем про то, что на затвор приходит минус "-". Импульс перевёрнут.

S = (2,25mS + 0,75mS) / 0,75mS = 3mS / 0,75mS = 4. Где,

    S - скважность (безразмерная величина);

    Τ - период следования (миллисекунды, mS). В нашем случае период равен сумме включения (0,75 mS) и паузы (2,25 mS);

    τ- длительность импульса (миллисекунды, mS). У нас это 0,75mS.

Также можно определить коэффициент заполнения (D), который в англоязычной среде называют Duty Cycle (часто встречается во всяких даташитах на электронные компоненты). Обычно он указывается в процентах %.

D = τ/Τ = 0,75/3 = 0,25 (25%). Таким образом, в режиме пониженной яркости светодиод включен лишь на четверть периода.

Когда делал подсчёты первый раз, то коэффициент заполнения у меня вышел 75%. Но потом, увидев в даташите на FM2819 строчку про режим 1/4 яркости, понял, что где-то облажался. Я просто перепутал паузу и длительность импульса местами, поскольку по привычке принял минус "-" на затворе за плюс "+". Поэтому и вышло всё наоборот.

В режиме "STROBE" мне не удалось посмотреть ШИМ сигнал, так как осциллограф аналоговый и довольно старый. Синхронизировать сигнал на экране и получить чёткое изображение импульсов мне не удалось, хотя было видно его наличие.

Типовая схема включения и цоколёвка микросхемы FM2819. Может, кому пригодится.

Не давали мне покоя и некоторые моменты, связанные с работой светодиода. Со светодиодными фонарями я раньше, как-то не имел дела, а тут захотелось разобраться.

Когда я полистал даташит на светодиод Cree XM-L T6, который установлен в фонаре, то понял, что номинал токоограничительного резистора маловат (0,13 Ом). Да, и на плате одно посадочное место под резистор было свободно.

Когда шерстил по интернетам в поисках информации о микросхеме FM2819, то видел фото нескольких печатных плат аналогичных фонарей. На одних были запаяны четыре резистора по 1 Ому, а на некоторых вообще SMD-резистор с маркировкой "0" (перемычка), что, на мой взгляд, вообще является преступлением.

Светодиод - это нелинейный элемент, и, поэтому, последовательно с ним необходимо включать токоограничивающий резистор.

Если заглянуть в даташит на светодиоды серии Cree XLamp XM-L, то можно обнаружить, что их максимальное напряжение питания составляет 3,5V, а номинальное 2,9V. При этом ток через светодиод может достигать величины в 3А. Вот график из даташита.

Номинальным током для таких светодиодов считается ток в 700 mA при напряжении в 2,9V.

Конкретно в моём фонаре ток через светодиод составил 1,2 A при напряжении на нём в 3,4...3,5V, что явно многовато.

Чтобы уменьшить прямой ток через светодиод я запаял вместо прежних резисторов четыре новых номиналом в 2,4 Ом (типоразмер 1206). Получил общее сопротивление в 0,6 Ом (мощность рассеивания 0,125W * 4 = 0,5W).

После замены резисторов прямой ток через светодиод составил 800 mA при напряжении в 3,15V. Так светодиод будет работать при более мягком тепловом режиме, и, надеюсь, прослужит долго.

Поскольку резисторы типоразмера 1206 рассчитаны на мощность рассеивания в 1/8W (0,125 Вт), а в режиме максимальной яркости на четырёх токоограничивающих резисторах рассеивается мощность около 0,5Вт, то от них желательно отвести излишнее тепло.

Для этого зачистил от зелёного лака медный полигон рядом с резисторами и напаял на него каплю припоя. Такой приём частенько применяется на печатных платах бытовой электронной аппаратуры.

После доработки электронной начинки фонаря покрыл печатную плату лаком PLASTIK-71 (электроизоляционный акриловый лак) для защиты от конденсата и влаги.

При расчётах токоограничительного резистора я столкнулся с некоторыми тонкостями. За напряжение питания светодиода стоит принимать напряжение на стоке MOSFET транзистора. Дело в том, что на открытом канале MOSFET-транзистора теряется часть напряжения из-за сопротивления канала (R (ds)on).

Чем выше ток, тем большее напряжение "оседает" по пути Исток-Сток транзистора. У меня при токе в 1,2А оно составило 0,33V, а при 0,8А - 0,08V. Также часть напряжения падает на соединительных проводах, которые идут с клемм аккумулятора на плату (0,04V). Казалось бы, такая мелочь, а в сумме набегает 0,12V. Так как под нагрузкой напряжение на Li-ion аккумуляторе проседает до 3,67...3,75V, то на стоке MOSFET"а уже 3,55...3,63V.

Ещё 0,5...0,52V гасит цепь из четырёх параллельных резисторов. В итоге на светодиод приходит напряжение в районе 3-ёх с небольшим вольт.

На момент написания этой статьи в продаже появилась обновлённая версия рассмотренного налобного фонаря. В нём уже встроена плата контроля заряда/разряда Li-ion аккумулятора, а также добавлен оптический датчик, который позволяет включать фонарь жестом ладони.

Компания Apple следит за предпочтениями своих пользователей. И конечно старается держать планку между производителями смартфонов.
Множество функций iPhone все более укореняет марку среди его фанатов. Появление на iPhone фонаря добавило положительных отзывов пользователей. Эта функция используется намного чаще, чем можно было представить изначально. Незаменимая вещь в ночное время, а так же для людей слабовидящих. И конечно, неожиданная поломка рассматриваемой функции сопровождается всякого рода неудобствами.

Поломка случается по разным причинам. Эта неисправность в той или иной степени связана с камерой, или вспышкой. Устройство выходит из строя когда, например, появляется сигнал о перегреве или просто камера перестает функционировать, а при попытке воспользоваться ею виден только черный экран. Конечно, застав владельца смартфона врасплох, отсутствие света фонаря лишает нас полезной функции. Можно прибегнуть к помощи, обратившись в сервисный центр. Рассмотрим причины появления поломок такого рода. Следующие описания также применимы если, не работает фонарик на iPhone 4 или фонарик на iPhone 5s.

Причины по которым не срабатывает фонарь на айфоне

Причин, когда фонарь не рабочий несколько:

1 Например, длительное время устройство находилось в воде, а также проникновение влаги из-за повреждения герметичности. 2 При механическом повреждении аппарата или падении. 3 Когда при касании значка камеры употреблялась сила, больше чем предусмотрено правилами использования. 4 Если на смартфоне установка приложения фонаря выполнена с ошибками или его установка вовсе не производилась. 5 Не квалифицированное внедрение в работу устройства, путем раскручивания, перепрограммирования и так далее.

iPhone 4s не работает вспышка

Выделим два пункта: механическое повреждение, не правильная установка приложения функции и попадание воды во внутрь устройства. Самостоятельно решить проблему можно благодаря следующим рекомендациям.

В пункте меню находится соответствующее обозначение,фонарик”, которое и приводит в действие вспышку, выполняющую роль фонарика. Находится светодиодное отверстие на задней крышке айфона и отсутствие признаков свечения говорит о его неисправности. Проанализировать предмет поломки можно перейдя с одной (неисправной) камеры на другую. Если не работает, то причина в цепи камер. Решить проблему технического характера поможет перепрошивка. Данный способ позволяет вернуть правильную работу не рабочей вспышке на iPhone 4s, с помощью которого все должно включиться. Конечно, переустановку вы сможете сделать самостоятельно, но с риском потери информации.

Если на iPhone 5 не работает вспышка или не работает вспышка на iPhone 5s применимы те же манипуляции. Так же, когда не работает вспышка на iPhone 6 можно воспользоваться перепрошивкой устройства.
Еще способ когда, к примеру не работает вспышка на iPhone 5. Можно попробовать перезагрузить программу камеры. И если камера сразу правильно не запустилась, можно воспользоваться технической поддержкой компании Apple.
Существует еще одна часто встречающаяся проблема сбоев в работе камеры и ее связующих вспышки и фонарика. Это не работающий аппарат после обновления.

Восстановление функций фонарика айфона после обновления

  • Произвести манипуляции включения или выключения сс режимом энергосбережения (включить можно командой голоса).
  • Переключаться с одной камеры на другую, до исчезновения черного экрана.
  • Механически воздействовать на значок камеры, но не переусердствовать.
  • Отключить или остановить приложения использующие камеру.

Попытаться включить налаживаемую функцию.

  • Выполняем жёсткую перезагрузку девайсу.
  • Общий сброс настроек и контента.
  • Через режим ДФУ восстанавливаем устройство.

В случае когда не включается фонарик на iPhone 5, можно рискнуть самостоятельно отремонтировать смартфон. Но помните, гаджеты на гарантии не стоит трогать и лучше воспользоваться предоставленной гарантией. На эту услугу выделено 2 года и если вы не раскручивали айфон, то поломки устранит сервисный центр.

Каждый автовладелец пытается каким-то образом протюнинговать свою машину. В частности, это касается фар, подсветки, то есть всего, что связано со светом в машине. Самым распространенным вариантом является установка светодиодов. Но у этих ламп есть свои особенности, в том числе и касательно эксплуатации и ремонта.

Особенности ремонта светодиодных фонарей

Светодиоды являются в некотором роде универсальными – совокупностью качества и функционала. С практической точки зрения, именно светодиоды и ксеноновые фары являются «соперниками». Кто-то отдает предпочтение первому варианту, а кто-то второму. Нельзя отрицать, что светодиодная оптика более сильная за счет того, что свет расходится пучком, внешне же такой вариант выглядит более стильно, к тому же, встречный водитель не будет ослеплен таким светом. Следует упомянуть и о недостатках такого способа освещения. Светодиодные лампы оснащены достаточно сложной системой охлаждения.

Светодиодные лампы хоть и позиционируются как очень долговечные, но многие автомобилисты жалуются на перебои в работе. К примеру, спустя 2 – 3 месяца после установки светодиодов в машине лампы могут начать мигать. Что же делать в этом случае? Для начала, нужно разобраться в том, как работают светодиодные лампы. Этим лампам нужно давать ток такой силы, как указывает производитель. Можно меньше, но никак не больше.

Поэтому вместе со световыми лентами нужно устанавливать и устройство, которое стабилизирует ток. То есть, когда освещение выходит из строя, придется проверять и это устройство. Также для ремонта светодиодных ламп нужно разбираться в том, как они установлены. Это ведь электричество, с ним нужно быть осторожным.

Какие есть неисправности светодиодных фонарей

Теперь разберемся конкретно с причинами, по которым светодиодные лампы перестают гореть. Причин может быть несколько. Если лампочка просто перегорела, то зачастую ее просто меняют на новую. Очень многие автовладельцы, которые установили светодиоды вместо ламп накаливания, через некоторое время после начала эксплуатации начинают замечать, что лампочки время от времени мигают. Первая мысль при виде такого «действа» - неправильный монтаж светодиодных ламп. Но это актуально только в том случае, если Вы производили установку самостоятельно.

Для того чтобы проверить правильность установки диодов, возьмите те штатные лампы, которые стояли до этого, установите их на место и проверьте реакцию. Если штатные лампы будут нормально гореть, не мерцая, то с проводкой все в порядке. Ранее уже было сказано, что вместе со светодиодами устанавливается и стабилизатор тока.

Зачастую, в роли стабилизатора выступает резистор. Вот и с ним могут быть проблемы. Для того, чтобы проверить его работу, разберите осветительное устройство. У разных диодов разные резисторы, зачастую с сопротивлением 390 – 560 Ом . Дела обстоят так, что заявленной мощности будет недостаточно для нормального освещения. А вот напряжение в бортовой сети машины часто скачет, поэтому установить 12В там можно не всегда. Дабы предотвратить поломку светодиодов из-за этих нестыковок, нужно предпринять несколько простых действий, которые должны устранить мерцание ламп.

Разберите диод. Нужно будет использовать его цоколь. Подготовьте более мощный резистор (860 – 1000 Ом) и вставьте в цоколь. Подключите лампу к системе. Работать она должна бесперебойно. Если Вы вставили лампочку, а она все-таки не загорелась, то стоит проверить предохранители. Проблема может быть в напайке на цоколе. Если она меньше, чем на обычной лампочке, которая стояла раньше, то светодиод загорится, только если на него нажать.

Если отпустить лампу, то она поднимется вверх пружиной, из-за чего нарушается соединение. Также могут перестать работать по причине термической деградации. Происходит это, если тепло от ламп полностью не отводится.

Также не стоит забывать и о самой проводке. Под действием того же тепла или по причине простых механических повреждений какой-то маленький проводок может не проводить ток, то есть лампы гореть не будут. Вы можете сгоряча побежать в магазин за новыми лентами, но после их установки все равно увидите, что реакции от ламп нет никакой. Тогда стоит внимательно осмотреть проводку – вдруг где-то нарушилась изоляция или произошел зажим провода. Исходя из причины, следует выбирать способ ремонта светодиодного освещения.

Что нужно для ремонта светодиодных фонарей

Для ремонта автомобильных светодиодов Вам потребуется особый набор инструментов и материалов, применяемый для ремонта автомобильной проводки:

- набор проводов с сечением соответствующего диаметра

Провода на клеммы для проверки наличия искры на свечах

Индикатор для проверки проводки на предмет наличия разрыва

Изолента

Ножик с кусачками

Предохранитель

Преобразователь напряжения.

Всем этим придется запастись, ведь в противном случае Вам будет сложнее определить причину поломки. Светодиоды – изобретение уникальное, но требующее внимание. Поэтому не оставляйте на потом ремонт освещения своего автомобиля.

Посвящается всем тем, кто имеет аналогичные светодиодные фонари.
Типовая проблема последних - свинцовый (AGM) аккумулятор на 4 Вольта, который «неожиданно» перестает работать.
Недавно был обзор с решением аналогичной проблемы. .
Я пошел немного по другому пути, позже будет понятно почему.

Сначала немного о фонарях:


Бюджетные фонари имеющие приличные размеры и посредственные характеристики. Но их продолжают покупать и использовать. Фонарь содержит в себе множество сверхъярких светодиодов 3-5мм.




Включены светодиоды как правило параллельно, через токоограничивающие резисторы.


Сердцем фонаря является свинцовая (AGM) аккумуляторная батарея емкостью до 4.5Ач.


Положительным моментом можно считать неприхотливость аккумулятора. Возможность подзарядки в любое время и работа при отрицательных температурах. Последний момент в моей переделке не учитывается, поскольку эксплуатация фонаря при значительной отрицательной температуре не планируется.

Забегая вперед скажу, что времени на переделку фонаря потребовалось около 2х часов.

Вскрываем фонарь и извлекаем дохлую батарею:

Для начала произвел замер потребляемого тока при напряжении на батарее 3.84 В:




Последовательно светодиодам установлены резисторы для ограничения тока. Из за изменившегося напряжения фонаря можно было бы понизить сопротивления резисторов, но делать этого я не стал. Яркость упала незначительно, с этим можно смириться, да и хлопотно это по времени.
При напряжении 4.2В ток превышал 1 А. Это стало отправной точкой при решении проблемы. Использование кит набора дешевого повербанка отпадает из за неспособности последнего выдать необходимый ток.

Решение было на поверхности:
Два варианта плат, одна с защитой от переразряда, другая без защиты:


Немного о платах. Контроллер один из самых распространенных TP4056. Я использовал аналогичную плату . Документация на контроллер . Контроллер обеспечивает ток заряда до 1 Ампера, поэтому можно примерно рассчитать время заряда аккумуляторов.
Какую плату использовать в вашем фонаре зависит от типа применяемых элементов 18650. Если есть защита от переразряда, тогда ту что справа. Иначе можно возложить функцию защиты аккумулятора на плату с коей она замечательно справляется. Платы отличаются между собой наличием дополнительных деталей, таких как контроллер разряда DW01 и силовой ключ 8205(сдвоенный полевой транзистор) для отключения в нужный момент аккумулятора от нагрузки или защиты от перезаряда.

Места внутри много, можно установить хоть десяток аккумуляторов, но я для пробы обошелся одним.


Последний был извлечен из старой батареи ноутбука и протестирован на зарядном устройстве IMAX B6:




При токе разряда 1 Ампер, остаточная емкость 1400 мАч. Этого хватит примерно на час- полтора непрерывной работы фонаря.

Пробуем подключить аккумулятор к плате:




Провода к аккумулятору паять надо аккуратно, не перегревая последний. Если не уверены, то можно использовать холдер для аккумулятора.


Так же желательно соблюдать цветовую дифференциацию штанов использовать провода разного цвета для подключения питания.

Подключаем плату через кабель micro USB к блоку питания:




Загорелся красный светодиод, заряд пошел.

Теперь надо установить плату- контроллер заряда в фонарь. Специальных креплений не предусмотрено, поэтому делаем колхоз используя любимый всеми суперклей.


Склеить хоть раз пальцы святая обязанность каждого, кто пользовался .

Изготавливаем кронштейн из подходящей металлической пластинки (подойдет элемент из детского металлического конструктора).


Для того, что бы избежать замыкания используем изоляционный материал. Я применил кусочек термоусадочной трубки.

Закрепил плату предварительно подключив провода что шли ранее к свинцовому АКБ:




Снаружи выглядит так:


Видны мелкие дефекты по бокам от разъема. Исправляются следующим образом: ямка или щель засыпается пищевой содой и потом 1-2 капли суперклея. Клей схватывается мгновенно. Через 30 секунд можно надфилем обработать поверхность.
Аккумулятор внутри закрепляем любым доступным способом. Я применил герметик, кому то удобнее клеевой пистолет.
Отверстие разъема подзарядки будет позже закрыто резиновым колпачком.

Собираем и включаем:


Работает.
Upd: Если планируется подключение нескольких аккумуляторов параллельно, то перед соединением, во избежание порчи последних необходимо привести все аккумуляторы к единому ЭДС (по простому напряжение).

Выводы: Расходы по деньгам примерно 100 рублей и 2 часа времени. Аккумулятор в расчет не беру, использовал полудохлый с большим внутренним сопротивлением. Получаю рабочий фонарь. Описываемые мной процедуры не панацея, существуют и другие варианты доработки фонарей. Индикацию процесса зарядки/готовности выводить на корпус не стал. Свечение светодиодов синий/красный видно сквозь корпус.
Плата кстати может иметь любой разъем какой вам понравится mini или micro USB. Все зависит от наличия нужных кабелей. Кроме всего прочего у нас на руках остается блок питания для зарядки свинцового аккумулятора - можно будет с пользой пристроить куда нибудь.

Плюсы:
Рабочий фонарь, меньший вес (хотя это малозначительный факт). заряжать можно в любом доступном месте при наличии USB зарядки или компьютера.
Минусы:
Аккумулятор боится мороза, меньшая яркость (примерно на 10-15%) по отношению к заводскому варианту. В конце разряда яркость падает, заметно на глаз. Для решения этой проблемы можно поставить более емкий (или несколько) аккумулятор.