Солнечная батарея своими руками на светодиодах. Светодиод как солнечная батарея Диодная солнечная батарея

Представляет подборку из форума – обсуждение идеи солнечной батареи на светодиодах. Идея, казалось бы, лежит на поверхности, но до конца ее никто пока не реализовал.

В отличие от кремниевых пластин, которые в домашних условиях из песка не выплавишь, светодиодов немеряно впаяно по всяким старым платам, которые сейчас обычно просто выкидывают. К тому же, на светодиодах имеется «природный» концентратор света – тот самый корпус, который рассеивает свет при работе светодиода в естественном режиме!

Если вы сделаете рабочий экземпляр – пишите нам , EnergyFuture.RU опубликует ваш рассказ и подарит вам футболку со своим логотипом!

Alex_Soroka

дернуло меня два светодиода прозрачной заливки но желтого цвета вставить в тестер китайский и выставить на солнце

…получил 1.5 Вольта! причем ориентация не точно на солнце – а если точно – то и выше. Ток – 5.6мА!!! (два светодиода паралельно)

Токи: от лампы настольной (люминисц.) на 9Вт мощности – получил 0.8В, ток – 3.5мА

Вопросик сразу возник: а может есть смысл на светодиодах строить солн. батарею?

У светодиодов есть линза - так что они собирают свет в пучек на сам кристалл полупроводника, т.е. усиливают свет, а значит кристалл надо меньше чем классические солн.батт – которые жутко дорогие… Светодиоды можно самые простые – сверхяркие нам не нужны…

Да и по Дискавери показывали недавно – народ ставит линзу и маааленькую пластинку солнечного элемента – так линза чуть не выжигает его…

Надо посмотреть - может есть «бросовые» маленькие светодиоды – не сверхяркие, а просто любые с прозрачным корпусом? …и собрать для них плату 10х10см которая будет как батарея – но это посчитать надо как соединять – чтобы получить 9-12В и ток заметный…

Светодиоды я применял стандартные – не 3мм диам. а 5мм. желтого свечения но с прозрачной заливкой акрилом(как раз примерно пик диапазона светимости Солнца). Вот и получается что «пятно» 5мм диаметра концентрируется линзой светодиода в точку примерно 0.5мм2(кристалл)

Смотрите в Инете и Википедии «спектр Солнца» – и по нему ищите светодиоды ближайшие к максимуму.

Drovalex

Ну та в чем вопрос? Конечно, можно использовать. Но вот мне кажется, что при той же мощности батарея на диодах обойдется как и обычная солнце батарея. А вот если будет снимать с килоВ.м больше, чем обычная солнце батарея, тогда это и есть цель – соотношение затрат на килоВ.м.

ФЭ модуль MSW12-12________Цена: 2.750 руб.

Пиковая мощность: 12Вт ±5% Номинальное напряжение: 12 В

Напряжение в точке максимальной мощности – 17 В Ток в точке максимальной мощности: 0,7 А

Размеры: 270*480*17мм Вес: 0,9 кг

Светодиодов с вашими замерами потребуется около 1400 штук, чтобы развить аналогичную этой батареии мощность. Да, если диоды покупать в Кнр, то такая батарея из диодов раза в два дешевле будет, чем ФЭ. Так что успехов в захвате солнечного света.

Михенбай

Вы пишите …получил 1.5 Вольта! причем ориентация не точно на солнце – а если точно

То и выше. Ток – 5.6мА!!! (два светодиода параллельно)

Считаю 400 светодиодов выдадут 1,12 ампера и 1.5 вольта!!! чтобы получить 12вольт при том же токе необходимо спаять сборочку из 3200 светодиодиков. размеры я не прикидывал и вес. цена (допустим светодиод стоит 50 копеек в супероптовой конторе на светодиодном заводе) получаем 1600 руп за батарею 12 вольт и 13.44 Ватта. Неплохо!!!

Overrider

проверял светодиоды 5R3SCB-2/W красные, последовательно 18 штук (это у меня задний габарит такой) около вольта при поднесении почти вплотную к энергосберегающей лампе. 5Y3SCС-2/W жёлтые в той же конфигурации (поворотники), ещё меньше, что-то около 0.3-0.4в. Ток не замерял, ибо смысл?

Если соберётесь делать солнечную батарею такие светодиоды брать не стоит

Такими солнечными батарейками я баловался в 2000 г., так как по работе имею доступ к сверхярким светодиодам (монтирую электронные часы на светодиодах). Могу сказать, что тогда использовал красные сверхяркие светодиоды, с одного диода снималось напряжение 1,63 В, но ток был маленький 10-15 мкА, фотобатарейкой питал часы на ЖК, фотобатарея из двух светодиодов стоит у меня на автономном серебрителе воды (что бы работал без батареек, тем более, что светодиодов и серебряных электродов хватит лет на 20 – 30). Ставил простой опыт – к батарее из 6 светодиодов подключал сверхяркий светодиод, который заметно светился. На спор я делал на подобном девайсе емкостной накопитель (ставил электролит на 15000, мкФ), а потом разряжал его на лампочку 2,5 В * 0,15 А, лампочка кратковременно горела. Желтые и зеленые тоже пробовал, но напряжение с них снимается меньшее, и ток был небольшой. Попробую на днях современные светодиоды. Согласен, что испытывать их надо только на солнечном свете, но в крайнем случае и лампа накаливания годится. Не пойдут светодиоды синего и белого свечения, так у них люминофор возбуждается ультрафиолетом, а подойдут все те, у которых непосредственно излучает кристалл.

В хозяйстве радиоконструктора всегда найдутся старые диоды и транзисторы от ставших ненужными радиоприемников и телевизоров. В умелых руках это - богатство, которому можно найти дельное применение. Например, сделать полупроводниковую солнечную батарею для питания в походных условиях транзисторного радиоприемника.

Ранее мы уже приводили , надеемся, вы заметили. Как известно, при освещении светом полупроводник становится источником электрического тока - фотоэлементом. Этим свойством мы и воспользуемся. Сила тока и электродвижущая сила такого фотоэлемента зависят от материала полупроводника, величины его поверхности и освещенности. Но чтобы превратить диод или транзистор в фотоэлемент, нужно добраться до полупроводникового кристалла, а, говоря точнее, его нужно вскрыть.

Как это сделать, расскажем чуть позже, а пока загляните в таблицу, где приведены параметры самодельных фотоэлементов. Все значения получены при освещении лампой мощностью 60 Вт на расстоянии 170 мм, что примерно соответствует интенсивности солнечного света в погожий осенний день.

Энергия, вырабатываемая одним фотоэлементом, очень мала, поэтому их объединяют в батареи. Чтобы увеличить ток, отдаваемый во внешнюю цепь, одинаковые фотоэлементы соединяют последовательно. Но наилучших результатов можно добиться при смешанном соединении, когда фотобатарею собирают из последовательно соединенных групп, каждая из которых составляется из одинаковых параллельно соединенных элементов.

Предварительно подготовленные группы диодов собирают на пластине из гетинакса, органического стекла или текстолита, например, так, как показано на рисунке 4. Между собой элементы соединяются тонкими лужеными медными проводами. Выводы, подходящие к кристаллу, лучше не паять, так как от высокой температуры можно повредить полупроводниковый кристалл. Пластину с фотоэлементом поместите в прочный корпус с прозрачной верхней крышкой. Оба вывода подпаяйте к разъему - к нему будете подключать шнур от радиоприемника.

Солнечная батарея из 20 диодов КД202

Пять групп по четыре параллельно соединенных фотоэлемента на солнце генерирует напряжение до 2,1 В при токе до 0,8 мА. Этого вполне достаточно для того, чтобы питать радиоприемник на одном-двух транзисторах.

Теперь о том, как превратить диоды и транзисторы в фотоэлементы. Приготовьте тиски, бокорезы, плоскогубцы, острый нож, небольшой молоток, паяльник, оловянно-свинцовый припой ПОС-60, канифоль, пинцет, тестер или микроамперметр на 50-300 мкА и батарейку на 4,5 В. Диоды Д7, Д226, Д237 и другие в похожих корпусах следует разбирать так. Сначала отрежьте бокорезами выводы по линиям А и Б (рис.1).

Смятую при этом трубочку В аккуратно расправьте, чтобы освободить вывод Г. Затем диод зажмите в тисках за фланец. Приложите к сварному шву острый нож и, несильно ударив по тыльной стороне ножа, удалите крышку. Следите за тем, чтобы лезвие ножа не проходило глубоко вовнутрь - иначе можно повредить кристалл. Вывод Д очистите от краски - фотоэлемент готов.

У диодов КД202 (а также Д214, Д215, Д242-Д247) плоскогубцами откусите фланец А (рис.2) и отрежьте вывод Б. Как и в предыдущем случае, расправьте смятую трубку В, освободите гибкий вывод Г.


Но то было уже готовое решение.

Сейчас же я расскажу про свой опыт создания светодиодной солнечной батареи своими руками .

Прошу обратить внимание, что статья обозначена символами ƒ↓ (опыт не удался). Перед началом работы люблю смотреть похожие поделки и оценивать у кого что получилось. Вот тема одного форума , где этот вопрос всплыл раньше, но воплотить в жизнь и сделать развёрнутый обзор эффективности светодиодов никто не взялся.

Лично мне, идея пришла совершенно случайно, также случайно как я попал на чужую пару вольным слушателем. Там рассказывали про светодиоды и возможность их использования как фотодиодов . То есть, другими словами, светодиоды тоже преобразуют свет в электричество !

Для начала нужно определить какие светодиоды лучше использовать. Но сейчас не сезон и тестить под прямыми солнечными лучами не получиться, да и не постоянное это солнце. Что же делать? Забить Забыть до лета? Это не подход мозгочинов и всех самодельщиков))

В дело вступает галогеновая лампа, купленная в статье про .

Галогенка выбрана не случайно, а за счет близости к солнечному спектру излучения и большой мощности.

Решил собрать и кое где открутить все светодиоды , которые были в нашей мозгочинской лаборатории.

Для максимальной точности сравнения все светодиоды подносились перпендикулярно и вплотную к центру лампы . Но прежде чем заглянуть в таблицу выберите, основываясь на личных знаниях и опыте, — какой светодиод выдаёт большее напряжение? Белый, красный, может инфракрасный?

5 мм Вольт
Зеленый непрозрачный светодиод 1,51
Зеленый прозрачный светодиод 1,48
Ультрафиолетовый светодиод 0,11
Инфракрасный светодиод 0,93
Красный прозрачный светодиод 1,37
Оранжевый непрозрачный светодиод 1,52
Красный полупрозрачный светодиод 0,52
Белый светодиод 0,32
3 мм
зеленый непрозрачный светодиод 1,52
зеленый непрозрачный с отражателем!!! 1,57
10 мм
Красный непрозрачный светодиод 1,16

Кто загадывал зелёный , тому — зачот!

Поэтому выберем все зелёные индикаторные диоды.

Далее я спаял 9 светодиодов последовательно и еще 9 параллельно , чтобы сравнить эффективность при 2-х видах подключения. Остановился на 3 мм, т.к. они выдают такой же вольтаж, как и светики по 5 мм (ох и бесит меня это слово) .

Результаты вышли следующими:

При последовательном подключении всего 1,25 V

параллельно 1,56 V. Я ожидал совсем иного. Силу тока измерять не удалось (из за моего мультиметра). Но я и так знаю, что она там ничтожно мала. Интересно, что при последовательном соединении напряжение только уменьшилось. Может это связанно с тем, что светодиоды частично потребляют энергию, которую сами же конвертируют из света!?

В общем слова профессора (с 1 Ф:))) подтвердились и ничего не вышло. Но чтобы убедиться в этом наверняка, я подключил светодиоды к электронному термометру, который питается от 1 полуторовольтовой таблетки. И…. барабанная дробь …

Ничего.(

Epic Fail!

Вывод: площадь p — n перехода у светодиодов очень мала (по сравнению с солнечной батареей). Например полоска составляет несколько сантиметров.


С каждым днем выбросы углекислоты и токсичных веществ в атмосферу увеличивается, токсичные вещества вырабатываются при сгорании ископаемого топлива, в следствии чего постепенно уничтожают нашу планету. Поэтому внедрение «зеленой энергии», у которой вовсе отсутствует негативное влияние на окружающую среду, уже закрепила себя как базой основ новых электротехнологий. Одной из основ таких технологий получения экологически чистой электроэнергии это технология которая преобразует солнечный свет в электроэнергию. Далее пойдет речь о солнечных батареях, а так же их возможности в собственном доме.
В нынешнее время электроустановки в виде солнечных батарей изготовленных в промышленных условиях, используются для полного и частичного энерго-обеспечения и тепло-обеспечения дома, и стоят в районе 15-20 тысяч долларов при гарантии работы 25 лет.
Гелиосистемы разделяют на тепло обеспечения и энергообеспечения. В случае тепло обеспечения используются технологии солнечного коллектора. В случае энергообеспечения происходит фотоэлектрический эффект, с помощью которого происходит генерация электричества в солнечных батареях. Далее я опишу технологию ручной сборки солнечной батареи.
Технология ручной сборки солнечной батареи вовсе не сложна и даже очень проста и доступна всем. Почти каждый человек может собрать солнечные батареи с относительно высоким КПД при довольно низких затратах. Это экологично, выгодно, доступно и в последнее время модно.

Выбор солнечных элементов для солнечной панели

Приступив к созданию солнечной электростанции, нужно учитывать, что при ручной сборке солнечных батарей нет нужды сразу собирать полнофункциональную солнечную электростанцию, её в будущем можно будет наращивать. Если первый эксперимент ручной сборки оказался положительным, то после имеет смысл увеличить функциональность солнечной электростанции.

Прежде всего нужно знать что такое солнечная батарея, солнечная батарея — это прежде всего генератор, который работает на основе фотоэлектрического эффекта и преобразует солнечную тепловую энергию в электрическую энергию. Кванты света, которые вырабатывает солнце, попадают на кремниевую пластину и выбивает электрон с последней атомной орбиты кремния. Данный эффект создает большое количество свободных электронов, которые образуют поток электрического тока.

Перед тем как приступить к сборке солнечной батареи нужно сделать выбор в типе фотоэлектрического преобразователя. Фотоэлектрические преобразователи: монокристаллические, поликристаллические и аморфные. Для ручной сборки солнечной батареи чаще всего выбирают легко доступные в продаже поликристаллические и монокристаллические солнечные модули.

Солнечные панели из поликристаллического кремния имеют достаточно низкий КПД от 7 до 9%, но этот недостаток компенсируется тем, что поликристаллические панели практически не понижают КПД при облачной и пасмурной погоде, гарантийная работоспособности поликристаллических элементов составляет примерно 10 лет. Солнечные панели на основе элементов монокристаллического кремния имеют более высокий КПД около 13% и сроки работоспособности приблизительно 25 лет, но монокристаллические элементы сильно понижают мощность при отсутствии прямого попадания солнечного света. Величина КПД кристаллов кремния может существенно изменятся от разных производителей. На практике работы солнечных электростанций в полевых условиях можно сказать о сроке службы монокристаллических панелей более 30 лет, а для поликристаллических модулей — более чем 20 лет. Причем за весь период эксплуатации потеря мощности у кремниевых монокристаллических и поликристаллических модулей составляет не более 10 процентов, а у тонкопленочных аморфных модулей только за первые два года мощность может снизится на 10-40%.

Набор Solar Cells можно приобрести на аукционе Еbay для сборки солнечной батареи из 36 и 72 солнечных элементов. Эти наборы так же доступны в продаже в Украине и в России. Зачастую, для ручной сборки солнечных батарей используются солнечные модули В-типа, это те модули, которые отбраковали на промышленном производстве. Они не теряют своих эксплуатационных показателей, но зато намного дешевле.

Разработка проекта гелиевой энергосистемы

Проектирование задуманной солнечной электростанции зависит от способа её монтажа и установки. К примеру солнечные батареи должны устанавливаться под определенным наклоном, чтобы обеспечить прямое попадание солнечных лучей под перпендикулярным углом. КПД солнечной панели так же зависит от интенсивности световой энергии, а также зависит от угла попадания солнечных лучей.
Смотреть сверху вниз: Монокристаллические солнечные панели (по 80 ватт) на даче установлены практически вертикально (зима). Монокристаллические солнечные панели на даче имеют меньший угол (весна)ю Механическая система управления углом наклона солнечной батареи.

Промышленные солнечные панели очень часто снабжены специальными датчиками, которые обеспечивают движение солнечных панелей по направлению движения солнечных лучей, что очень увеличивает стоимость солнечных панелей. Но так же тут может быть применено ручное механическое управление углом наклона солнечных панелей. В зимнее время солнечные панели должны быть практически вертикальными, чтобы исключить залегание снега на солнечных панелях.

Схема расчета угла наклона солнечной панели в зависимости от времени года

Солнечные батареи следует устанавливать с солнечной стороны вашего дома, чтобы за световой день пребывание солнечных лучей на солнечных батареях было максимально. В зависимости от географического расположения вашего дома и времени года вычисляется оптимальный угол наклона для вашего месторасположения.

Выбор оптимального статического угла наклона для кровельной солнечной системы монокристаллического типа

При сооружении солнечных панелей можно выбирать самые разные материалы по массе и другим характеристикам. Но при выборе материалов следует учитывать максимально допустимые температуры нагрева материалов, т.к. при работе солнечных модулей на полную мощность температура не должна превышать 250 градусов по Цельсию. При пиковой температуре солнечные модули теряют свою функцию производства электрического тока.
Готовые гелиосистемы зачастую не предполагают охлаждения солнечных модулей. Ручное изготовление может включать в себя охлаждение гелиосистемы и управление углом наклона солнечных панелей для регулировки температуры модуля, а так же выбор прозрачного материала, который будет поглощать ИК-излучение.

Как показали расчеты, в ясный солнечный день из 1 метра солнечных панелей можно получить 120 Вт мощности, но этого не хватит чтоб запустить даже компьютер. Солнечные панели размером в 10 метров производит уже более 1кВт электроэнергии, что позволит снабдить электроэнергией светильники, телевизоры и ваш компьютер. Для обычной семьи 3-4 человека необходимо около 300 кВт в месяц, поэтому солнечные панели должны быть размеров 20м, при условии что солнечные панели будут установлены с солнечной стороны вашего дома.
Для уменьшения месячного электро-потребления советую использовать для освещения вместо обычных лампочек, светодиодные лампочки.

Изготовление каркаса солнечной батареи

Для изготовления корпуса солнечной панели в основном используют алюминиевые уголки. В интернет магазинах можно приобрести уже готовые корпуса для солнечных батарей. А так же для изготовления корпуса солнечной панели выбирают по желанию прозрачное покрытие.

Комплект рамы со стеклом для солнечной батареи, примерная стоимость от 33 долларов

При выборе прозрачного материала можно опираются на следующие характеристики материалов:

Если в качестве критерия выбора рассматривать показатель преломления солнечного света, то самый минимальный коэффициент у плексиглас, более дешевый вариант это обычное стекло, менее подходящий это поликарбонат. Но в продаже сейчас имеется поликарбонат с антиконденсатным покрытием, что обеспечивает качественный уровень теплозащиты.

Важно про изготовлении солнечных панелей выбирать прозрачные материалы которые не пропускают ИК-спектр, что снизит нагревание кремниевых элементов.

Схема поглощения УФ и ИК излучения различными стеклами. а) обычное стекло, б) стекло с ИК-поглощением, в) дуплекс с термопоглощающим и обычным стеклом .

Защитное силикатное стекло с оксидом железа обеспечивает максимальное поглощение ИК-спектра. ИК-спектр хорошо поглощает любое минеральное стекло, а так же минеральное стекло более устойчиво к повреждениям, но в тоже время является очень дорогим и недоступным.

Так же зачастую для солнечных панелей применяют специальные антибликовые сверх прозрачные стекла, которые пропускают до 98% спектра.

Солнечная панель в корпусе из оргстекла

Монтаж корпуса солнечной батареи

В данном случае будет показано изготовление солнечной панели из 36 поликристаллических солнечных модулей размером 81х150мм. Отсюда вычисляем размеры будущей солнечной панели. Важно при расчете между модулями оставлять небольшое расстояние, которое может меняются при воздействии атмосферных воздействий, т.е. оставляйте между модулями примерно 3-5мм. В итоге получим размер заготовки 835х690мм при ширине уголка 35мм.

Самодельная солнечная батарея изготовленная вручную, сделанная с использованием алюминиевого профиля, очень похожа на солнечную панель фабричного изготовления. При этом обеспечивается высокая степень герметичности и прочности конструкции.
Для изготовления берем алюминиевый уголок, и выполняем заготовки рамки 835х690 мм. Чтобы можно было провести крепление метисов, в раме следует сделать отверстия.
На внутреннюю часть уголка дважды наносим силиконовый герметик.
Важно чтобы не было незаполненных мест. От качества нанесения герметика зависит герметичность и долговечность батареи.
Далее в раму кладется прозрачный лист из выбранного материала: поликарбоната, оргстекла, плексигласа, антибликового стекла. Важно силикону дать высохнуть на открытом воздухе, иначе испарения создадут пленку на элементах.
Стекло требуется тщательно прижать и зафиксировать.
Для надежного крепления защитного стекла используем метисы. Нужно закрепить 4 угла рамки и по периметру разместить два метиса с длинной стороны рамки и по одному метису с короткой стороны.
Метисы фиксируются при помощи шурупов.
Каркас солнечной батареи готов. Важно перед креплением солнечных элементов, нужно очистить стекло от пыли.

Подбор и пайка солнечных элементов

В данное время в интернет магазинах представлен огромный ассортимент изделий для самостоятельного изготовления солнечных батарей.

Набор Solar Cells включает комплект из 36 поликристаллических кремниевых элементов, проводники для элементов и шины, диоды Шотке и карандаш с кислотой для паяния

Из-за того что солнечная батарея, сделанная своими руками, ориентировочно в 4 раза дешевле заводской готовой, собственное изготовление — это огромная экономия средств. В интернет магазинах можно приобрести солнечные модули, элементы с дефектами, при этом они не теряют своей функциональности, но придется пожертвовать внешним видом солнечной батареи.

Поврежденные фотоэлементы не теряют своей функциональности

Если вы впервые занимаетесь изготовлением солнечных батарей, то лучше приобретать наборы для изготовления солнечных панелей, в продаже имеются солнечные элементы с припаянными проводниками. Так как пайка контактов — это достаточно сложный процесс, сложность заключается в хрупкости солнечных элементов.

Если вы купили кремниевые элементы без проводников, то в первую очередь необходимо провести пайку контактов.


Так выглядит поликристаллический кремниевый элемент без проводников.
Проводники надрезаются с помощью картонной заготовки.
Необходимо аккуратно положить проводник на фотоэлемент.
На место припаивания нанести кислоту для паяния и припой. Проводник для удобства фиксируется с одной стороны тяжелым предметом.
В таком положении необходимо аккуратно припаять проводник к фотоэлементу. Во время пайки нельзя нажимать на кристалл, потому что он очень хрупкий.

Пайка элементов для солнечных панелей — это весьма кропотливая работа. Если с первого раза не удастся получить нормального соединения, то нужно повторить работу. По нормативам серебряное напыление на проводнике должно выдерживать 3 цикла пайки при допустимых тепловых режимах, на практике сталкиваешься с тем, что напыление разрушается. Разрушение серебряного напыления происходит из-за использования паяльников с нерегулируемой мощностью (65Вт), этого нужно избегать, можно уменьшить мощность паяльника таким образом — для этого нужно последовательно с паяльником включить патрон с лампочкой в 100 Вт. Помните, что номинальная мощность паяльника нерегулируемого слишком большая для пайки кремниевых контактов.

Если вам продавцы проводников будут говорить, что припой на соединителе имеется, но вы его лучше нанесите дополнительно. Во время пайки будьте аккуратны, при минимальном усилии солнечные элементы лопаются, а так же не нужно складывать солнечные элементы пачкой, от массы нижние элементы могут треснуть.

Сборка и пайка солнечной батареи
При первой ручной сборке солнечной батареи лучше воспользоваться разметочной подложкой, которая поможет расположить элементы ровно на некотором расстоянии друг от друга (5 мм).

Разметочная подложка для элементов солнечной батареи

Основа выполняется из листа фанеры с маркированием уголков. После пайки на каждый элемент с обратной стороны крепится кусок монтажной ленты, достаточно прижать заднюю панель к скотчу, и все элементы переносятся.

Монтажная лента, использованная для крепления, с обратной стороны солнечного элемента

При данном типе крепления сами элементы дополнительно не герметизируют, они могут свободно расширяться под действием температуры и это не приведет к повреждению солнечной батареи и разрыву контактов и элементов. Герметизации поддаются только соединительные части конструкции. Такой вид крепления больше подходит для опытных образцов, но вряд ли может гарантировать долгосрочную эксплуатацию в полевых условиях.

Последовательный план сборки батареи выглядит так:

Выкладываем элементы на стеклянную поверхность. Между элементами должно быть расстояние, что предполагает свободное изменение размеров без ущерба конструкции. Элементы нужно прижать грузами.

Пайку производим по приведенной ниже электросхеме. «Плюсовые» токонесущие дорожки размещены на лицевой стороне элементов, «минусовые» — на обратной стороне.
Перед пайкой нужно нанести флюс и припой, после аккуратно припаять серебряные контакты.

По такому принципу соединяются все солнечные элементы.

Контакты крайних элементов выводятся на шину, соответственно, на «плюс» и «минус». Для шины используется более широкий серебряный проводник, который имеется в наборе Solar Cells.
Рекомендуем также вывести «среднюю» точку, с ее помощью ставятся два дополнительных шунтирующих диода.

Клемма устанавливается также с внешней стороны рамы.

Так выглядит схема подключения элементов без выведенной средней точки.

Так выглядит клеммная планка с выведенной «средней» точкой. «Средняя» точка позволяет на каждую половину батареи поставить шунтирующий диод, который не даст батарее разряжаться при снижении освещения или затемнении одной половины.

На фото показан шунтирующий диод на «плюсовом» выходе, он противостоит разрядке аккумуляторов через батарею в ночное время и разрядке других батарей во время частичного затемнения.
Чаще в качестве шунтирующих диодов используют диоды Шотке. Они дают меньшую потерю на общей мощности электрической цепи.
В качестве токовыводящих проводов может быть использован акустический кабель в силиконовой изоляции. Для изоляции можно применить трубки из-под капельницы.
Все провода должны быть прочно зафиксированы силиконом.

Элементы могут быть соединены последовательно (см. фото), а не посредством общей шины, тогда 2-й и 4-й ряд необходимо повернуть на 1800 относительно 1-го ряда.

Основные проблемы сборки солнечной панели связаны с качеством пайки контактов, поэтому специалисты предлагают перед герметизацией панели ее протестировать.

Тестирование панели перед герметизацией, напряжение сети 14 вольт, пиковая мощность 65 Вт

Тестирование можно делать после пайки каждой группы элементов. Если вы обратите внимание на фотографии в мастер-классе, то часть стола под солнечными элементами вырезана. Это сделано намеренно, чтобы определить работоспособность электрической сети после пайки контактов.

Герметизация солнечной панели

Герметизация солнечных панелей при самостоятельном изготовлении — это самый спорный вопрос среди специалистов. С одной стороны, герметизация панелей необходима для повышения долговечности, она всегда применяется при промышленном изготовлении. Для герметизации зарубежные специалисты рекомендуют использовать эпоксидный компаунд «Sylgard 184», который дает прозрачную полимеризованную высоко эластичную поверхность. Стоимость «Sylgard 184» составляет около 40 долларов.

Герметик с высокой степенью эластичности «Sylgard 184»

Но с другой стороны, если вы не хотите тратить дополнительные деньги, то вполне можно задействовать силиконовый герметик. Однако в этом случае не стоит полностью заливать элементы, чтобы избежать их возможного повреждения в процессе эксплуатации. В таком случае элементы к задней панели можно прикрепить при помощи силикона и герметизировать только края конструкции.

Перед началом герметизации необходимо подготовить смесь «Sylgard 184».

Сначала заливаются места стыков элементов. Смесь должна схватиться, чтобы закрепить элементы на стекле.

После фиксации элементов делается сплошной полимеризирующий слой эластичного герметика, распределить его можно с помощью кисточки.

Так выглядит поверхность после нанесения герметика. Герметизирующий слой должен просохнуть. После полного высыхания можно закрыть солнечную батарею задней панелью.

Так выглядит лицевая сторона самодельной солнечной панели после герметизации.

Схема электроснабжения дома

Систему электроснабжения дома с использованием солнечных батарей принято называть фотоэлектрическими системами, т.е. системами, генерирующими энергию с использованием фотоэлектрического эффекта. Для собственных жилых домов рассмотрены три фотоэлектрические системы: автономная система энергообеспечения, гибридная батарейно-сетевая фотоэлектрическая система, безаккумуляторная фотоэлектрическая система, подключенная к центральной системе энергоснабжения.

Каждая из вышеперечисленных систем имеет свое предназначение и преимущества, но наиболее часто в жилых домах применяют фотоэлектрические системы с резервными аккумуляторными батареями и подключением к централизованной энергосети. Питание электросети осуществляется при помощи солнечных батарей, в темное время суток от аккумуляторов, а при их разрядке — от центральной энергосети. В труднодоступных районах, где нет центральной сети, в качестве резервного источника энергоснабжения используются генераторы на жидком топливе.

Более экономной альтернативой гибридной батарейно-сетевой системе электроснабжения будет безаккумуляторная солнечная система, подсоединенная к центральной сети энергоснабжения. Электроснабжение осуществляется от солнечных батарей, а в темное время суток сеть питается от центральной сети. Такая сеть более применима для учреждений, потому что в жилых домах большая часть энергии потребляется в вечернее время.

Схемы трех типов фотоэлектрических систем

Рассмотрим типичную установку батарейно-сетевой фотоэлектрической системы. В качестве генератора электроэнергии выступают солнечные панели, которые подсоединены через соединительную коробку. Далее в сети устанавливается контроллер солнечного заряда, чтобы избежать короткого замыкания при пиковой нагрузке. Электроэнергия накапливается в резервных батареях-аккумуляторах, а также подается через инвертор на потребители: освещение, бытовую технику, электроплиту и, возможно, используется для нагревания воды. Для установки системы отопления эффективнее применять гелиоколлекторы, которые относятся к альтернативной гелиотехнологии.

Гибридная батарейно-сетевая фотоэлектрическая система с переменным током

Существует два типа электросетей, которые используются в фотоэлектрических системах: на базе постоянного и переменного тока. Использование сети переменного тока позволяет размещать электропотребители на расстоянии, превышающем 10–15 м, а также обеспечивать условно-неограниченную нагрузку сети.

Для частного жилого дома обычно используют следующие комплектующие фотоэлектрической системы:
-суммарная мощность солнечных панелей должна составлять 1000 Вт, они обеспечат выработку около 5 кВт ч;
-аккумуляторы с общей емкостью в 800 А/ч при напряжении 12 В;
-инвертор должен иметь номинальную мощность 3кВт с пиковой нагрузкой до 6 кВт, входное напряжение 24–48 В;
-контроллер солнечного разряда 40–50 А при напряжении в 24 В;
-источник бесперебойного питания для обеспечения кратковременного заряда с током до 150 А.

Из этого следует, что для фотоэлектрической системы электроснабжения понадобится 15 панелей на 36 элементов, пример сборки которых описан выше. Каждая солнечная панель дает суммарную мощность в 65 Вт. Более мощными будут солнечные батареи на монокристаллах. Например, солнечная панель из 40 монокристаллов имеет пиковую мощность 160 Вт, однако такие панели чувствительны к пасмурной погоде и облачности. В этом случае солнечные панели на базе поликристаллических модулей оптимальны для использования.

Информация с сайта:

Обнаружение этого эффекта вызвало широкий интерес как ученых, так и энтузиастов-любителей. Но если наука достаточно быстро убедилась в тупиковости исследований в этом направлении, то горячие головы любителей электротехники это естественно ни в чем не убедило.

Каждый, у кого отыскалось в запасах некоторое количество светодиодов, решил попытать счастья на этом поприще. Почему именно светодиодов? Да просто в них, уже загодя, собрано все, что необходимо для проведения эксперимента.

Полупроводниковая пара со строго определенным диапазоном возбуждения, линза и провода для подключения. Просто замечательная исследовательская база. Результатом облучения солнечным светом светодиода становится появление разности потенциалов порядка 0,7 В. Правда, необходимо сразу оговориться, что о силе тока речь практически не идет, поскольку она исчезающе мала.

Решение, к которому подталкивает традиционная логика, чрезвычайно просто. Достаточно наращивать разность потенциалов, а затем… только вот затем, как правило, в данном случае не происходит, а вся проблема в том, что по мере сборки таких модулей напряжение вовсе не увеличивается пропорционально количеству.

Напротив, все больше возрастают потери в контактах, и, более того, часть светодиодов вместо того, чтобы, потребляя свет, вырабатывать электричество, начинают сами его потреблять и излучать свет.

Методов борьбы с этим эффектом просто нет. Таким образом, до сих пор ни одного реально действующего устройства для получения электроэнергии с помощью светодиодов так и не удалось создать, невзирая на многочисленные попытки и эксперименты.

И все же солнечные батареи

Солнечные батареи сегодня далеко не редкость. Они уже достаточно широко распространены и на Западе, и у нас в стране. Они массово выпускаются промышленностью и имеют вполне удовлетворительные технические данные.

Собранные на единой алюминиевой раме солнечные батареи имеют мощность от 10 до 300 Вт и ориентированы на использование их в качестве источника электроэнергии для зарядки аккумуляторов.

Для получения необходимого напряжения и нужной мощности, солнечные батареи собирают в особые пакеты.

К преимуществам солнечных батарей следует отнести долговечность – более пятнадцати лет работы. Высокую стойкость к циклическому режиму, а также отсутствие необходимости обслуживания.